
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and 
Dissertations 

2020 

Resilience-oriented design and proactive preparedness of Resilience-oriented design and proactive preparedness of 

electrical distribution system electrical distribution system 

Shanshan Ma 
Iowa State University 

Follow this and additional works at: https://lib.dr.iastate.edu/etd 

Recommended Citation Recommended Citation 
Ma, Shanshan, "Resilience-oriented design and proactive preparedness of electrical distribution system" 
(2020). Graduate Theses and Dissertations. 17958. 
https://lib.dr.iastate.edu/etd/17958 

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and 
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and 
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, 
please contact digirep@iastate.edu. 

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17958&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17958?utm_source=lib.dr.iastate.edu%2Fetd%2F17958&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Resilience-oriented design and proactive preparedness of electrical distribution

systems

by

Shanshan Ma

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Program of Study Committee:
Zhaoyu Wang, Major Professor

Venkataramana Ajjarapu
Ian Dobson

James D. McCalley
Leigh Tesfatsion

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation. The Graduate College
will ensure this dissertation is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2020

Copyright c© Shanshan Ma, 2020. All rights reserved.



www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my husband Yu Chen and to my little baby Marcus

without their support I would not be able to complete this work. I would also like to thank my

friends and family for their loving guidance and support during the writing of this work.



www.manaraa.com

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2. REVIEW OF LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Resilience-oriented Design Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Resilience-oriented Operational Measures . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 3. RESILIENCE-ORIENTED DESIGN OF DISTRIBUTION SYSTEMS US-
ING STOCHASTIC PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Stochastic Decision Process Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 The First Stage Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Uncertainty Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 The Second Stage Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Probability of sampled scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5 Scenario Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Two-Stage Stochastic MILP ROD Formulation . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 The First Stage Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 The Second Stage Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 A Compact Notation Form of ROD Model . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Dual Decomposition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 Test Case: IEEE-123 Distribution Feeder . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Case1: Comparison with and without ROD . . . . . . . . . . . . . . . . . . . 38
3.5.3 Case2: The Self-Healing Operation . . . . . . . . . . . . . . . . . . . . . . . . 40



www.manaraa.com

iv

3.5.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.5 Solution Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CHAPTER 4. RISK-AVERSE PROACTIVE PREPAREDNESS OF ELECTRICAL DIS-
TRIBUTION SYSTEMS WITH CONDITIONAL VALUE-AT-RISK . . . . . . . . . . . . 45
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Uncertainty Estimation under Extreme Weather Events . . . . . . . . . . . . 46
4.2.2 Proactive Energy Management and Preparation . . . . . . . . . . . . . . . . . 48

4.3 Two-stage Stochastic Mixed-Integer Programming Formulation with CVaR Constraints 49
4.3.1 Conditional Value-at-Risk as a Risk Measure . . . . . . . . . . . . . . . . . . 49
4.3.2 Conditional Value-at-Risk in Optimization . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 The Compact Notation of Pre-Event Preparation Problem . . . . . . . . . . . 66
4.4.2 Progressive Hedging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 Lower Bounds on CVaR-Based Stochastic Integer Programs . . . . . . . . . . 67

4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Pre-event Resource Preparation Results with α = 95% . . . . . . . . . . . . 70
4.5.3 Resilience Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.4 Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

CHAPTER 5. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 77
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Resilience-Oriented Design of Distribution Systems . . . . . . . . . . . . . . . 79
5.2.2 Risk-Averse Proactive Preparedness of Distribution Systems with Condi-

tional Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Resilience Assessment of Distribution Systems . . . . . . . . . . . . . . . . . 80
5.3.2 Resilience-oriented Design of Distribution Systems Using Risk Measures . . . 81
5.3.3 Proactive Preparedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



www.manaraa.com

v

LIST OF TABLES

Page
Table 3.1 Nomenclature for the SMILP ROD model . . . . . . . . . . . . . . . . . . . 23
Table 3.2 Evaluation of the on-off status variable . . . . . . . . . . . . . . . . . . . . . 29
Table 3.3 The investment cost of different ROD measures . . . . . . . . . . . . . . . . 38
Table 3.4 The solution quality statics for DD algorithm solving ROD problems . . . . 42
Table 4.1 Nomenclature for the CVaR-based SMILP model . . . . . . . . . . . . . . . 53
Table 4.2 The cost parameters for simulation . . . . . . . . . . . . . . . . . . . . . . . 69
Table 4.3 The amount of load served, average outage duration and pre-event allocation

cost with different confidence level α . . . . . . . . . . . . . . . . . . . . . . 73



www.manaraa.com

vi

LIST OF FIGURES

Page
Figure 1.1 The number, type, and annual cost of U.S. billion-dollar disasters from 1980

to 2018, based on NCEI data in 2019 [1] . . . . . . . . . . . . . . . . . . . . 2
Figure 3.1 Decision process for ROD problem. . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3.2 Pole types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3.3 The structure of uncertainty space: independent observable random vari-

ables/processes (highlighted in red) + deterministic casual connections (pa-
rameterized by the first-stage decision). . . . . . . . . . . . . . . . . . . . . . 15

Figure 3.4 Multipliers of load profiles at the substation (root node), with the peak
values as the bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.5 The illustrative example for isolating a contingency . . . . . . . . . . . . . . 27
Figure 3.6 Simulating a distribution pole’s damage status in a hurricane . . . . . . . . 39
Figure 3.7 The optimal ROD methods implementation . . . . . . . . . . . . . . . . . . 40
Figure 3.8 The second stage cost comparison with and without ROD under different

scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 3.9 The system resilience curve comparison . . . . . . . . . . . . . . . . . . . . 41
Figure 3.10 System’s self-healing operation at t = 10 . . . . . . . . . . . . . . . . . . . . 42
Figure 3.11 System’s self-healing operation at t = 21 . . . . . . . . . . . . . . . . . . . . 43
Figure 4.1 The sequential actions of the distribution system operator for an upcoming

extreme weather event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 4.2 Line damage status simulation procedure . . . . . . . . . . . . . . . . . . . . 47
Figure 4.3 The VaRα and CVaRα of damage loss π(x, ξ) . . . . . . . . . . . . . . . . . 51
Figure 4.4 The optimal pre-event resource preparation at confidence level α = 95% . . 70
Figure 4.5 The optimal pre-event resource preparation at different confidence level α . 71
Figure 4.6 The damaged lines in the additional random scenario with α = 95% . . . . . 72
Figure 4.7 Load served percentage comparison for different confidence level α . . . . . 73
Figure 4.8 The value of CVaRα solutions over ER solutions . . . . . . . . . . . . . . . . 75
Figure 4.9 The value of ER solutions over CVaRα solutions . . . . . . . . . . . . . . . . 75



www.manaraa.com

vii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to those who helped me with various

aspects of conducting research and the writing of this thesis. First and foremost, Dr. Zhaoyu Wang

for his guidance, patience, and support throughout this research and the writing of this thesis. His

insights and words of encouragement have often inspired me to explore new approaches for solving

my research problems and renewed my hopes for completing my graduate education. He helped

me to become a strongly self-motivated researcher.

Secondly, I would like to thank my committee members for their efforts and contributions to

this work: Dr. Venkataramana Ajjarapu, Dr. Ian Dobson, Dr. James D. McCalley, and Dr. Leigh

Tesfatsion. It is my honor to take those famous professors’ classes at Iowa State University. Dr.

Ajjarapu’s lecture on the steady study of power system enhanced my fundamental knowledge of the

power system. In Dr. McCalley’s power system planning class, I got some instrumental conceptions

on the planning optimization problems. Dr. Dobson’s resilience lecture helped me to rethink the

definition of resilience. With cooperation with Dr. Tesfatsion, I learned how to describe my idea

logically. I would additionally like to thank Dr. Lizhi Wang for his inspirational teaching of linear

programming and optimization. His lecture inspired me to mathematically model my research

problems and find practical algorithms to solve them. I also tremendously appreciated Dr. Sarah

M Ryan’s guidance in the stochastic programming.

Thirdly, I would like to thank my collaborators: Dr. Bokan Chen, Dr. Liu Su, Dr. Ge Guo,

Dr. Anmar Arif, and Dr. Shiyang Li. Dr. Chen helped me to get into my research quickly, and

with his help, I published my first transaction journal. Dr. Liu strengthened my understanding of

decision-dependent uncertainty. Dr. Guo taught me how to use high-performance computation and

formulate stochastic programming problems in the Pyomo, which are very useful for my research.

Dr. Li always gave me the robust support for my research. Each time’s discussion always sharpened



www.manaraa.com

viii

my intelligence and inspired me to generate new ideas. He can explain the problems in the power

system in a mathematically way and gave me very good suggestions for my research.

Fourthly, I would like to thank my friends: Dr. Qian Zhang, Dr. Xian Guo, Dr. Yihua Li., Dr.

Dan Hu, Kai Zhou, Nichelle’Le Carrington and my labmates. Their accompanying let me know I

am not alone as a Ph.D. student.

Finally, I want to express my thanks to my family for their support. Without my husband’s

help, I even can not start my Ph.D. life. Thanks to my parents’ understanding and support as it

has been five years that I did not go back home and missed so many important family events. I do

appreciate my parents-in-law’s taking care of my new-born baby, especially my mother-in-law Mrs.

Emei Tang. Without her help, I cannot finish my thesis writing and come back to my research.



www.manaraa.com

ix

ABSTRACT

Extreme weather events, such as hurricanes and ice storms, pose a top threat to power distri-

bution systems as their frequency and severity increase over time. Recent severe power outages

caused by extreme weather events, such as Hurricane Harvey and Hurricane Irma, have highlighted

the importance and urgency to enhance the resilience of electric power distribution systems. The

goal of enhancing the resilience of distribution systems against extreme weather events can be

fulfilled through upgrading and operating measures. This work focuses on investigating the im-

pacts of upgrading measures and preventive operational measures on distribution system resilience.

The objective of this dissertation is to develop a multi-timescale optimization framework to pro-

vide some actionable resilience-enhancing strategies for utility companies to harden/upgrade power

distribution systems in the long-term and do proactive preparation management in the short-term.

In the long-term resilience-oriented design (ROD) of distribution system, the main challenges

are i) modeling the spatio-temporal correlation among ROD decisions and uncertainties, ii) captur-

ing the entire failure-recovery-cost process, and iii) solving the resultant large-scale mixed-integer

stochastic problem efficiently. To deal with these challenges, we propose a hybrid stochastic process

with a deterministic casual structure to model the spatio-temporal correlations of uncertainties. A

new two-stage stochastic mixed-integer linear program (MILP) is formulated to capture the impacts

of ROD decisions and uncertainties on system responses to extreme weather events. The objective

is to minimize the ROD investment cost in the first stage and the expected costs of loss of load,

DG operation, and damage repairs in the second stage. A dual decomposition (DD) algorithm with

branch-and-bound is developed to solve the proposed model with binary variables in both stages.

Case studies on the IEEE 123-bus test feeder have shown the proposed approach can improve the

system resilience at minimum costs.
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For an upcoming extreme weather event, we develop a pre-event proactive energy management

and preparation strategy such that flexible resources can be prepared in advance. In order to

explicitly materialize the trade-off between the pre-event resource allocation cost and the damage

loss risk associated with an event, the strategy is modeled a two-stage stochastic mixed-integer

linear programming (SMILP) with Conditional Value at-Risk (CVaR) constraints. The progressive

algorithm is used to solve the proposed model and obtain the optimal proactive energy management

and preparation strategy. Numerical studies on the modified IEEE 123-bus test feeder show the

effectiveness of the proposed approach to improve the system resilience at different risk levels.
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CHAPTER 1. OVERVIEW

1.1 Research Motivation and Problem Statement

The extreme weather-caused outages have resulted in substantial economic losses in recent years

in the United States. Between 2003 and 2012, roughly 679 power outages, each affecting at least

50, 000 customers, occurred due to weather events in the United States, and 80%-90% of these

outages were due to failures in distribution systems [2]. For example, Hurricane Sandy in 2012

paralyzed the power systems of several coastal states and resulted in outages that affected over 8.5

million customers [3]. Moreover, the number and cost of extreme weather events have increased

over time due to a combination of increased exposure, vulnerability, and the fact the climate change

is increasing the frequency of some types of extreme weather events that have led to billion-dollar

disasters [1]. A summary for the number, type, and annual cost of U.S. billion-dollar disasters

from 1980 to 2018 is shown in Figure 1.1. In the Figure 1.1, the number of severe storm events

accounts for more than 50% of the total number of extreme events, and they have brought more

than $150 billion/year in damage costs over the last three years. For example, Hurricane Irma in

2017 knocked out power to 6.7 million electricity customers—64% of all customers accounts in the

state of Florida— and its overall damage cost reached to approximately 50 billion [4, 5].

However, most existing distribution systems are designed and maintained for normal weather

conditions and cannot withstand extensive damages caused by the low-probability but high-intense

extreme weather events [6]. Moreover, U.S. power grids are now old and outdated, making them

more vulnerable to extreme weather events. Although the majority of utilities have recognized the

necessity of taking actions to upgrade the grid against extreme weather events, they still make grid

upgrading decisions based on experiences, patrols, and observations instead of leveraging systematic

and rigorous optimization techniques that are based on risk and consequence analysis. A common

approach is to upgrade previously damaged facilities or perform targeted components hardening
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Figure 1.1 The number, type, and annual cost of U.S. billion-dollar disasters from 1980 to

2018, based on NCEI data in 2019 [1]

based on experience. In addition, it is economically infeasible to harden/upgrade all the systems and

take all potential extreme events into account. On the other hand, advanced weather forecasting

methodologies and damage estimation process provide utilities the ability to predict the severity of

damage to distribution systems before extreme weather events. If the utility can pre-allocating the

available flexible resources such as mobile emergency generator and energy storage, and repair crews

in advance, it can reduce the potential damage loss and decrease the restoration time. Therefore,

the need is to develop a decision support tool for long-term designing resilient distribution systems

and short-term preparing flexible resources for upcoming extreme weather events.

Power grid resilience is the ability to prepare for, absorb, recover from, or more successfully

adapt to actual or potential adverse events [7]. The resilience-enhancement goals can be fulfilled

through upgrading and operating measures [8]. This work focuses on investigating the impacts of

upgrading measures and preventive operational measures on distribution system resilience.
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1.2 Research Objective

The objectives of the dissertation are listed as follows:

• Develop a new modeling and solution methodology for the long-term resilience-oriented design

of power distribution systems against wind-induced extreme weather events. The objective is

to take optimal ROD measures, namely, line hardening, installing backup distributed gener-

ators (DGs), and adding automatic switches, to make distribution systems more resilient to

wind-induced extreme weather events. This methodology should consider the spatial-temporal

correlations among ROD measures, uncertainty space, and system operations during and after

extreme weather events. It is also supposed to model the entire failure-recover-cost process

of distribution systems during and after extreme weather events so that both investment and

restoration costs can be modeled.

• Develop a short-term pre-event proactive energy management and preparation strategy such

that flexible resources can be prepared for an upcoming event. The objective is to strategically

prepare and coordinate various flexible resources, such as mobile emergency generator (MEG),

mobile energy storage (MES), back-up diesel DGs, network reconfiguration, and repair crews

to improve resilience during and after the event, while treats the trade-off between the damage

loss risk and pre-event allocation cost.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows:

Chapter 2 reviews the important literature and background information for enhancing the re-

silience of electric distribution systems under extreme weather events. It presents the general

resilience-oriented operational measures and ROD measures and the relevant research works for

boosting the resilience of distribution systems. Chapter 3 presents the methodology for long-term

resilience-oriented design of power distribution systems. The chapter starts with the stochastic deci-

sion process to model the uncertainties under the extreme weather events. Then a two-stage stochas-
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tic programming formulation and solution algorithm for ROD problems are presented. Chapter 4

presents a short-term proactive energy management and preparation approach for an upcoming

extreme weather event. A two-stage stochastic mixedinteger linear programming (SMILP) with

Conditional Valueat-Risk (CVaR) constraint is modeled for preallocating flexible resources and the

Progressive Hedging algorithm is introduced. Chapter 5 presents the conclusions and contributions

of this work and includes a discussion of possible future works.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Overview

This chapter presents a review of the literature and background information for enhancing

the resilience of electric distribution systems under extreme weather events. The efforts to enhance

distribution system resilience can be classified into two broad categories [8, 9, 10]: resilience-oriented

design measures and operational measures. Section 2.2 presents the current ROD measures and

related studies for designing resilience-oriented distribution systems. Section 2.3 introduces the

current main operational measures and related research for boosting system operational resilience.

2.2 Resilience-oriented Design Measures

ROD measures for enhancing distribution system resilience refer to physical changes of the

utility’s infrastructure to make it less susceptible to extreme weather event damages, such as high

winds, flooding, or flying debris [11]. It aims to improve the grid infrastructures’ durability and

stability and allow the system to withstand the impacts of extreme weather events with minimal

damage. The general ROD measures used by utilities include grid hardening, installing DGs, and

adding line switches.

Various grid hardening strategies can protect systems against extreme weather events. These

include overhead structure reinforcement, vegetation management, undergrounding distribution

lines, and the relocation of facilities. Overhead structure reinforcement constitutes a primary hard-

ening strategy that involves upgrading distribution poles to a stronger class, enhancing guying, and

refurbishing poles. Extensive vegetation management also can contribute to distribution system

hardening, as fallen trees and debris are credited with the majority of power outages that occur dur-

ing severe storms in the Northeastern part of the United States [12]. Undergrounding distribution

lines can reduce system susceptibility to wind-induced damages, lightning, and vegetation contacts,
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but they extend restoration time with a high installation and repair cost. Elevating substations

and relocating facilities to areas that are less prone to extreme weather can help protect against

floods.

The installation of back-up DGs can provide on-site power for critical facilities and load cen-

ters and contribute to energizing MGs to restore load after an extreme weather event [13, 14, 15].

Installing automatic switches enables network reconfiguration that can reroute power to on-outage

portions of distribution networks, shorten the restoration time, and enhance the restoration ca-

pability [16]. Although resilience-oriented planning measures could reduce physical infrastructure

failures and restoration efforts, hardening and upgrading the entire distribution systems are poten-

tially expensive.

A few optimization models have been proposed to optimally implement those resilience-oriented

planning measures to protect against extreme weather events, which in general apply two types

of modeling techniques: robust and stochastic modeling. Yuan et al. [17] proposed a new robust

optimization model to solve the resilient distribution network planning problem under the worst

scenario of extreme weather events. However, their study used a polyhedral set to represent dam-

age uncertainty, where grid fragility models for specific extreme weather events were ignored in

calculating the uncertainty budget. Moreover, only one hardening measure (line hardening) was

taken into consideration. In addition, it was assumed that hardened lines would not be damaged in

future events, which is impractical. In [18], the authors proposed a power distribution system hard-

ening framework using robust tri-level optimization. Three hardening strategies are considered in

[18]: upgrading distribution poles, managing vegetation, and the combination of the two. A greedy

algorithm was proposed to deal with the coupling issue of the hardening decisions at the first level

and the damage uncertainty in the second level. However, some important ROD measures were

missed, such as the installation of DGs and automatic tie switches. A tri-level robust optimization

model was presented in [19] to explore optimal network hardening strategies for enhancing the

resilience of integrated electricity and natural gas distribution systems against natural disasters.

Authors considered the distinct failure probabilities of overhead distribution lines and underground
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gas pipelines and applied DGs and gas storage facilities as effective emergency response resources

to supply critical loads.

Another approach to manage uncertainty in ROD problems is stochastic programming. Stochas-

tic programming is an extension of standard deterministic mathematical programming, in which the

space of possible outcomes (e.g., line failure uncertainty) is represented by a probability-weighted

scenario tree. Yamangil et al. [20] proposed a scenario-based variable neighborhood decomposi-

tion search algorithm to design resilient electrical distribution grids. This work improved previous

studies by assuming that the hardened lines could be damaged at the rate of 1
10 of unhardened

counterparts. However, the interrelation between the first-stage line hardening decisions and the

uncertain line damage status was not taken into account. The decision-dependent uncertainty is

inherent in infrastructure resilience enhancement. This is because resilience enhancement can only

change the failure probability of system components, but cannot reduce it to zero. To manage

the risk more realistically, it is necessary to model the failure of system components as a decision-

dependent uncertainty. Arab et al. [21] proposed a proactive resource allocation model for the

repair and restoration of potential damages to power system components in the traveling paths of

upcoming hurricanes. They used Bender’s decomposition to solve the two-stage stochastic integer

program. However, the quality of the solutions was not evaluated. Moreover, Bender’s decom-

position is efficient in solving stochastic programs with linear programming problems, but not for

mixed-integer programs in the second stage. A two-stage stochastic program model was intro-

duced in [22] to design resilient distribution grids and simultaneously considers hardening options,

redundancy options, MGs, and networked MGs.

2.3 Resilience-oriented Operational Measures

Operational measures refer to “smart” control-based actions taken to provide preventive and cor-

rective operational flexibility for effectively dealing with unfolding extreme weather events [9]. They

aim to make the distribution system “bend” rather than “break” in the face of an extreme weather

event [23]. The potential operational measures include network reconfiguration, distributed gen-
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eration (DG) rescheduling, conservation voltage regulation (CVR), defensive islanding, microgrid-

assisted control actions, and priority-based load shedding. Those operational measures contribute

to conservatively anticipating and coping with the adverse impacts of extreme weather events.

In the context of operational measures for preventive preparation in the resilience enhancement

of electric distribution systems, many researchers have investigated pre-event resource allocation

problems. A pre-hurricane generation resource allocation approach was presented in [13] to enhance

the capability of microgrids (MGs) and DGs to serve outage critical load during the post-hurricane

restoration. A novel defensive islanding algorithm was proposed in [24] to split the distribution sys-

tem into stable and self-adequate islands in order to isolate vulnerable components before extreme

weather events, as the failure of these items could trigger cascading events. The role of MGs has

become important in establishing proactive measures for enhancing distribution system resilience.

A MG proactive management framework was presented in [23] to cope with the adverse impacts

of extreme windstorms. The schedule ensures the normal operation of MG before a windstorm

while reducing the MG vulnerability at the event onset. A proactive scheduling methodology of

MGs was proposed in [25] to run the resilience-constrained optimal power flow in the pre-event

phase to minimize the adverse impacts of an upcoming flood. The authors in [26] employed a

two-stage adaptive robust optimization model for scheduling MG in advance to reduce the dam-

aging consequences of extreme weather events. Other researchers in [27] presented a preventive

resource allocation methodology to form MGs to restore critical loads after a large external dis-

turbance while satisfying post-disaster and operational constraints within each MG. A two-stage

framework that comprises pre-positioning and real-time allocation was proposed in [28] to dispatch

mobile energy generators to some nodes to restore critical loads after extreme weather events by

forming multiple MGs. Authors in [29] developed a two-stage stochastic mathematical model to

select staging locations, and allocate crews and equipment for disaster preparation. However, there

remains some limitations in the above studies on the short-term preparation and response for an

upcoming extreme weathe event: (1) Coordination of multiple flexible resources, such as mobile

generators and pre-staging repair crews, is not comprehensive; (2) Weather-induced uncertainties
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are oversimplified; (3) Approximation of three-phase unbalanced power flow model is not tight; (4)

The trade-off between pre-event allocation cost and risk associated with damage loss under the

upcoming event is not considered.

In the context of operational measures for corrective strategies after extreme weather events,

many types of repair and restoration techniques have been explored. Various algorithms of network

reconfiguration have been proposed for load restoration, including heuristic techniques, dynamic

programming, and multi-agent systems [30]. Recently, some studies have shown the potential to

use DGs and MGs to assist restoration process. A resilience-oriented service restoration method

by using MGs with limited generation resources was proposed in [14] to serve critical loads on

distribution feeders after an extreme event. The authors in [31] proposed a hierarchical outage

management scheme comprised of multi-microgrids to enhance the resilience of a smart distribution

system against unexpected disaster events. An optimal critical service restoration strategy was

presented in [32] to integrate MG formation and load switching sequence, and exploit the mobility,

flexibility, and resilience of MGs to address the risk of service restoration in extended extreme

events. The authors in [33] proposed a decentralized multi-agent system (MAS) approach for service

restoration using controlled DG islanding. A novel distribution system operational approach by

forming multiple microgrids energized by DGs was presented in [34] to restore critical loads in

distribution systems after the power outages.

In the literature mentioned above regarding restoration techniques, the repair process of dam-

aged components was either assumed to be specific, or the repair time was assumed to be known.

However, a faster or an optimal crew repair process can reduce the duration and size of power

outage and accelerate the restoration process. Some researches have explored the importance of

crew dispatch assignments in the optimality of the restoration sequence. Xu et al. in [35] proposed

a stochastic integer program to determine how to schedule the inspection, damage assessment, and

repair tasks of a set of substations to optimize the post-earthquake restoration of electric power

systems. A dynamic programming model was presented in [36] to determine the optimal sequence

of manual switch operations for distribution system restoration, taking the dynamic crew dispatch-



www.manaraa.com

10

ing into consideration. The authors in [37] proposed a methodology using concepts of queuing

theory and stochastic point processes to determine the repair schedules in each service territory of

a power distribution system. A mixed-integer linear programming model was introduced in [38]

for scheduling maintenance vehicles under emergency scenarios in electrical distribution systems to

minimize the dispatch time.

Other attempts have been made to integrate repair scheduling with restoration to enhance

the resilience of electric distribution systems. The authors in [30] formulated the distribution

system repair and restoration problem as a two-stage mixed integer linear program, considering

constraints of system operation and repair crew routing. Then, Arif et al. in [39] extended the

deterministic formulation in [30] to a two-stage stochastic mixed-integer program model to solve

the repair and restoration problem considering the stochastic nature of the repair time and the

customer load demand. Other researchers in [40] proposed a synthetic model that was introduced

to co-optimize service restoration and crew dispatch problems. The proposed optimal synthetic

restoration solution includes the optimal switching sequence of remote-controlled and manually

operated switches, an optimal routing sequence of operation and repair crews, and an optimal load

energization sequence. A mixed-integer nonlinear programming (MINLP) model was developed

in [41] to co-optimize the routing and scheduling of repair crews and mobile power sources, and

dynamic network reconfiguration for disaster recovery logistics.

2.4 Summary

This chapter provided a description and literature review for the research topics covered in

this dissertation. The general ROD measures were discussed in section 2.2, and the optimization

frameworks for optimally implementing them were covered in section 2.2. Section 2.3 summarized

the general resilience-oriented operational measures and related research on the problems related

to pre-event resource allocation, crew repair, and restoration.
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CHAPTER 3. RESILIENCE-ORIENTED DESIGN OF DISTRIBUTION

SYSTEMS USING STOCHASTIC PROGRAMMING

3.1 Overview

A distribution system is considered to be resilient if it is able to anticipate, absorb, adapt to,

and/or rapidly recover from a disruptive event [7]. The resilience enhancement goals can be fulfilled

through resilience-oriented operational and design measures [8].This chapter focuses on exploring

the impacts of ROD measures on system resilience. The primary challenge of distribution system

ROD is to model the entire failure-recovery-cost process. Specifically, evaluating the damage states

requires the modeling of various spatial-temporal uncertainties in weather events and structural

strengths, and some of them are decision-dependent. The recovery phase is usually neglected in the

existing literature on ROD. However, the ROD decisions affect the system recovery and the associ-

ated outage/repair costs. For example, adding DGs and switches offer self-healing capabilities such

as reconfiguration and automatic microgrid formation. These self-healing actions are time-varying.

In addition, there is an interaction between structural damages and electric outage propagation, as

the outage induced by physical damages may propagate in the network until a sectionalizer isolates

the fault. To overcome these challenges, section 3.2 propose a novel stochastic decision process to

describe the spatio-temporal correlations among ROD decisions, uncertainties of extreme weather

events, and system operation. A two-stage stochastic MILP formulation is proposed in section 3.3

to describe these spatial-temporal correlations of ROD decisions and uncertainty space with the

operation behavior during extreme weather events. Section 3.4 introduces the DD algorithm to

achieve the exact optimal solutions for the two-stage stochastic MILP of the ROD problem. The

proposed methodology is validated on a modified IEEE 123-bus distribution test system in section

3.5.
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3.2 Stochastic Decision Process Modeling

Figure 3.1 Decision process for ROD problem.

The goal of ROD for a distribution system is to optimally apply ROD measures to prevent sys-

tem from extensive damages caused by extreme weather events. However, the operation condition

of distribution systems during an extreme weather event is affected by many random factors and

some of them are coupled with ROD decisions. It results in the complexity of uncertainty modeling.

As depicted in Figure 3.1, the ROD problem is modeled as a two-stage stochastic decision process:

(i) the planner makes ROD decisions, i.e., pole hardening, installing backup DGs and adding sec-

tionalizers in the first stage; (ii) then the operational uncertainties are resolved during the hazards,

which include (a) power demand, (b) line damage statuses, and (c) line repair costs; (iii) the op-

erator makes the recourse decisions (i.e., DG re-dispatch, load shedding, and reconfiguration) to

minimize the operational cost during an extreme weather event in the second stage. Notice that

the line statuses are determined by wind speeds, pole strengths, and repair times, all of which are

stochastic. In particular, pole strengths and repair times are decision-dependent. Note that as the

wind-induced extreme weather events pose the top resilience-related threat to distribution system,

we focus on the uncertainty modeling caused by wind-induced extreme weather events.
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3.2.1 The First Stage Decisions

The resilience of distribution systems can be effectively enhanced by (i) strengthening vulnerable

components, (ii) increasing adequacy of power supply, and (iii) increasing topological flexibility.

Accordingly, this dissertation considers the following resilience-enhancing methods: (a) upgrading

pole classes, (b) adding transverse guys, (c) installing backup DGs, and (d) adding sectionalizers.

Thus, the first-stage decisions are represented by a row vector x =
[
xh,xg,xc1

]
, which is explained

as follows.

3.2.1.1 Hardening poles

For illustration, three commonly used pole types are considered: Southern Yellow Pine pole 40-

2, 40-3, and 40-4, each with or without guying [42]. Thus, there are 2×3 = 6 pole types (see Figure

3.2). For each line section, 6 binary decision variables are used to represent which pole type is

used for this line: let xhij =
[
xhij,1, x

h
ij,2, x

h
ij,3, x

h
ij,4, x

h
ij,5, x

h
ij,6

]
∈ {1,2,3,4,5,6} denote the selected

pole type for line (i, j). For example, xhij =
[
xhij,1, x

h
ij,2, x

h
ij,3, x

h
ij,4, x

h
ij,5, x

h
ij,6

]
= 1 = [1, 0, 0, 0, 0, 0]

indicates pole type 1 (40-2 with guying) is used. We have xh =
[
xh1 ,x

h
2 , . . . ,x

h
|ΩB |

]
∈ {0, 1}6|ΩB |

denoting pole types and implying pole hardening decisions of all lines. The formulation can be

easily extended to include more pole types.

Figure 3.2 Pole types.
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3.2.1.2 Installing Backup DGs

This paper considers backup DGs that are dispatchable during hazards. Let xg =
[
xg1, x

g
2, . . . , x

g
|ΩN |

]
∈ {0, 1}|ΩN | denote the DG deployment decisions, where a DG will be installed at node i if xgi = 1.

3.2.1.3 Adding sectionalizers

The automatic sectionalizers can be added at both ends of a line. They can be used to reroute the

power flow, and isolate the faulted or damaged network sections. Let xc1ij =
[
xc1ij,i, x

c1
ij,j

]
∈ {0, 1}2,

where a sectionalizer is added at the end i of line (i, j) if xc1ij,i = 1, and a sectionalizer is deployed

at the end j of line (i, j) if xc1ij,j = 1. We have xc1 =
[
xc11 ,x

c1
2 , . . . ,x

c1
|ΩB |

]
∈ {0, 1}2|ΩB | denoting the

decisions of deploying sectionalizers.

3.2.2 Uncertainty Modeling

The key challenge of uncertainty modeling in a ROD problem is the spatial-temporal correla-

tions among ROD decisions, extreme weather event uncertainties, and system operations. Besides,

the hazards and system operations are time-varying. It is challenging to model these uncertainties

by formulating a high-dimensional joint distribution. Therefore, a hybrid of independent stochastic

processes and deterministic causal structure is proposed as shown in Figure 3.3. Based on this struc-

ture, we firstly sample independent random variables individually and then generate the correlated

latent variables using the causal structure. Finally, three groups of random variables that have

direct impacts on the evolution of the system operation state can be obtained (highlighted in blue):

(a) line damage statuses u(t;xh)∈{0, 1}|ΩB | for t∈TH , where TH is the time horizon set of a cli-

matic hazard, and |TH | equals the hazard duration plus the longest line repair time; (b) repair costs

cr∈R|ΩB |
+ ; and (c) load demands P L(t), QL(t), for t∈TH . We use ξ=

[
u, cr,P L,QL

]
: Ω→ ΩS to

denote the random variable associated to a scenario.
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(a)  Line damage status

Damaged pole counter

(c)  Demand

(b)  Repair cost
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Figure 3.3 The structure of uncertainty space: independent observable random vari-

ables/processes (highlighted in red) + deterministic casual connections (pa-

rameterized by the first-stage decision).

3.2.2.1 Line Damage Status

Notice that the first-stage decision variable xh is a parameter in u(t;xh) as hardening poles

reduces the probability of line damage. This raises the challenge of sampling the random variables,

since the distribution of u(t) cannot be determined before the decision xh is known. It is reasonable

to assume that a line’s damage status is related to its own pole type, i.e., uij(t;x
h)=uij(t;x

h
ij) for all

(i, j)∈ΩB, t∈TH , and the number of possible values of xhij is small (6 in this dissertation) compared

to the number of possible values of xh (6|ΩB |). Thus, each uij(t) can be sampled in advance for

all possible values of xhij , which are ζij,1(t), . . . , ζij,6(t) in Figure 3.3(a). We can regard them as

different versions of uij(t) in six “parallel universes”, and only one of them will finally realize
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according to the value of xhij in the ROD solution. This selection logic is represented by constraint

(3.14) in Section 3.

A line is damaged when at least one pole of the line section is damaged, and it remains damaged

status until the repair is finished. We assume all the repair starts after the wind-induced hazard ends

(the wind speed drops to a certain level). Take ζij,3(t) in Figure 3.3(a) as an example. Each version

of uij(t) is determined by whether any pole of line (i, j) can be damaged, i.e., H3
ij,1(t),. . . ,H3

ij,mij
(t)

under this version, the wind speed trend v̄(t) (detailed later), and the repair time of line (i, j), i.e.,

TRij,3. It is assumed that TRij,k =NDij,k ·T
Rpole

ij , where NDij,k is the total number of damaged poles of

line (i, j) under version k, and T
Rpole

ij is the repair time for a single pole. For all (i, j)∈ΩB, T
Rpole

ij

is a random variable with an independent identical Weibull distribution:

f
T

Rpole
ij

(t)=


βT
αT

( t
αT

)βT−1exp[−( t
αT

)
βT ] if t > 0

0 otherwise,
(3.1)

where βT = 10 and αT = 4 [21]. NDij,3 can be obtained given H3
ij,1(t), . . . ,H3

ij,mij
(t).

Fragility models have been used to determine whether a pole will be damaged by a hurricane,

e.g., a fragility model that uses a log-normal distribution to express a pole’s failure probability as

a function of wind speed [23, 18]. It represents the probability that a pole will reach a defined

limit state within a given period. But it cannot model the temporal correlation of damages or

provide the exactly damaged time. In Figure 3.3(a), a pole’s status (damaged or functional)

in each version is simulated at every time instant based on the structural limit state function

G(t)=R−S(t) in [43]. Here the scalar quantities R and S(t) are functions of a number of more basic

parameters corresponding to a reliability formulation of high dimension in the structural design

of civil engineering. Take the n-th pole as an example, H3
ij,n(t) is determined by comparing the

pole resistance under current version, i.e., R3
ij,n, and the wind load under current version, i.e.,

S3
ij,n(t):H3

ij,n(t)=0 iff R3
ij,n6S

3
ij,n(t), which implies that the nth pole of line (i, j) can be damaged

by the wind-induced hazard at time t under version 3; H3
ij,n(t)=1 iff R3

ij,n>S
3
ij,n(t). R3

ij,n captures

the impact of pole types. The discrepancy among different poles of the same type is described by

F 3
ij,n, which is modeled by a normal distribution with mean of 8000 psi and standard deviation of
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1600 psi [44]. According to the pole type (which is 3 here), S3
ij,n(t) is a function of the time-varied

wind speed that the nth pole of line (i, j) experiences (detailed in [43]). The wind speed can be

decomposed into two components: the slow varying part v̄(t) (trend) and the fast varying part

∆vij,n(t) (volatility). Since the geographic range of a distribution system is usually much smaller

compared to the areas being affected by a wind-induced hazard, it is assumed: (i) v̄(t) (detailed in

[45]) is shared by all versions, all lines and all poles; and (ii) ∆vij,n(t) follows an independent and

identical normal distribution for all poles of all lines [45]. The dot-dashed lines in Figure 3.3(a)

illustrate these assumptions.

3.2.2.2 Repair cost

Similarly, χij,1, . . . , χij,6 represent the 6 versions of the repair cost of line (i, j), for the 6 pole

types. Take version 3 as an example [see Figure 3.3(b)], we assume χij,3 = NDij,3 · χ
p
ij,3, where χpij,3

is the repair cost for a single pole in the current version, which is assumed to be constant.

Figure 3.4 Multipliers of load profiles at the substation (root node), with the peak values

as the bases.
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3.2.2.3 Demand

The power demand of load i ∈ ΩL is assumed to be the product of a random multiplier, τPi or

τQi , and the hourly normalized load profile. For the multipliers, assume

τPi ∼ N(P i, (0.02P i)
2), ∀i ∈ ΩL (3.2)

τQi ∼ N(Qi, (0.02Qi)
2),∀i ∈ ΩL (3.3)

are independent for all i, where P i and Qi represent the mean values of daily peak active and

reactive power of load i over a year, respectively. We use Mp(t) and M q(t) to make load profile

shapes change with time. Figure 3.4 shows the multipliers of active and reactive load profiles at a

substation on a typical day in summer [46, 47]. In this dissertation, all loads are assumed to share

the same Mp(t) and M q(t). Since the wind-induced hazard could happen at any time, let assume

a uniformly distributed time offset, tL0 , for the load profiles. Thus, it will have

PLi (t) = τPi ·Mp(t+ tL0 ),∀i ∈ ΩL, t ∈ TH (3.4)

QLi (t) = τQi ·M
q(t+ tL0 ), ∀i ∈ ΩL, t ∈ TH . (3.5)

Notice that all variables at the source nodes in Figure 3.3 (highlighted in red) are independent.

Thus, they can be independently sampled, which can be performed in parallel with a small com-

putational burden.

3.2.3 The Second Stage Decisions

After the uncertainty is resolved, the system operator makes the recourse decisions to minimize

operation costs. The second-stage operation decisions can be represented by a vector yR,s =

[P g,s,Qg,s,yc,s,yr,s], where P s
g and Qs

g ∈ R|TH |×|ΩN |
+ denote the active and reactive power output

of backup DGs for t ∈ TH ; yc,s ∈ {0, 1}|TH |×2|ΩB | denotes the status of all sectionalizers for t ∈ TH ;

yr,s ∈ R|TH |×|ΩL|
+ denotes the load shedding ratios of all loads for all t ∈ TH .
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3.2.4 Probability of sampled scenarios

In a formal formulation of stochastic programming, the space of random variable ΩS is sketched

by a finite set of sampled scenarios, i.e. S (described by (3.12)). Accordingly, the distribution of all

random variables must be discretized to fit S (otherwise the probability for any scenario depending

on continuous distributions mentioned above is exactly zero). In practice, we first generate S

according to the distributions given above, then use

P(ξ) = 1/|S| , (3.6)

i.e. the frequency of scenario sample in S, to replace the original probability measure given by the

continuous distributions.

3.2.5 Scenario Generation

In summary, the procedure for scenario generation is as follows:

1: Input: network parameters (ΩB, ΩL, and mij for all (i, j) ∈ ΩB), operational parameters

[Mp(t) and M q(t)], scenario parameter (|S|), version (pole type) parameters (ΩK , physical

parameters), distribution parameters of independent random variables (Aa, δc, vtr , rf ; ∆vij,n,

F kb,ij,n and T
Rpole

ij , for all 1 ≤ n ≤ mij , all (i, j) ∈ ΩB and all k ∈ ΩK ; τPi and τQi for all i ∈ ΩL;

tL0 ; χij, k for all (i, j) ∈ ΩB and all k ∈ ΩK .

2: for scenario s = 1, . . . , |S| do

3: Sample Aa, δc, vtr and rf to generate v̄(t) for t = 1, . . . , T l, where T l is the time when v̄(t)

drops back to normal level

4: for (i, j) ∈ ΩB do

5: Sample TRpole from (3.1)

6: for k = 1, . . . , |ΩK | do

7: for n = 1, . . . ,mij do

8: Sample F kb,ij,n

9: Derive Rkij,n
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10: for t = 1, . . . , T l do

11: Set Hk
ij,n(t) = 1

12: for t′ = −60/60,−59/60, . . . ,−1/60 do

13: if k = 1 then

14: Sample vij,n(t+t′)

15: end if

16: Derive Skij,n(t+t′)

17: Get Gkij,n(t+t′) = Rkij,n − Skij,n(t+t′)

18: Get Hk
ij,n(t+t′) =

1 Gkij,n(t+t′) ≥ 0

0 Gkij,n(t+t′) < 0

19: if Hk
ij,n(t+t′) = 0 then

20: Set Hk
ij,n(t) = 0

21: break

22: end if

23: end for

24: if Hk
ij,n(t) = 0 then

25: Set Hk
ij,n(t+ 1) = . . . = Hk

ij,n(T l) = 0

26: break

27: end if

28: end for

29: end for

30: Get NDij,k =
mij∑
n=1

(
1−

T l∏
t=1

Hk
ij,n(t)

)
31: Get TRij,k = NDij,k · TRpole

32: Get T cij,k = T l + TRij,k

33: for t = 1, . . . , T l do

34: ζij,k(t) = 1−
mij∏
n=1

Hk
ij,n(t)

35: if ζij,k(t) = 1 then
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36: Set ζij,k(t+1) = . . . = ζij,k(T cij,k) = 1

37: break

38: end if

39: end for

40: Get χij,k = NDij,k · χij,k

41: end for

42: end for

43: Get T c = max
k∈ΩT

(i,j)∈ΩB

T cij,k

44: for (i, j) ∈ ΩB do

45: for k = 1, . . . , |ΩT | do

46: Set ζij,k(t) = 0 for T cij,k ≤ t ≤ T c

47: end for

48: end for

49: Sample tL0 from discrete uniform distribution on [0, 23]

50: for i = 1, . . . ,ΩL do

51: Sample τPi and τQi by (3.2) and (3.3)

52: Calculate PLi (t) and QLi (t) by (3.4) and (3.5)

53: end for

54: Output: ζij,k(t) for all k ∈ ΩK , (i, j) ∈ ΩB, 1 ≤ t ≤ T c; χij,k for all k ∈ ΩK , (i, j) ∈ ΩB;

PLi (t) and QLi (t) for all i ∈ ΩL, 1 ≤ t ≤ T c

55: end for

Notice that to obtain more authentic simulation of wind, ∆vij,n(t), and therefore Hk
ij,n(t) is first

sampled minutely (see t′ above), then Hk
ij,n(t) is down-sampled to hourly resolution.

3.3 Two-Stage Stochastic MILP ROD Formulation

A two-stage stochastic mixed-integer ROD formulation is developed. The objective of the first

stage is to minimize the costs of hardening lines, installing backup DGs, adding sectionalizers, and
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the expected cost of the second stage. The second stage is to minimize the costs of loss of load, DG

operation and damage repair. The first-stage problem is a linear integer program, and the second

stage is a mixed-integer linear program. The nomenclature for the proposed ROD model is shown

in the Table 3.1.

3.3.1 The First Stage Problem

min
∑

(i,j)∈ΩB

∑
k∈ΩK

cij,kx
h
ij,k+

∑
i∈ΩN

cgi x
g
i +

∑
(i,j)∈ΩB

ccij(x
c1
ij,i+x

c1
ij,j)+Q(x) (3.7)

s.t.
∑
k∈ΩK

xhij,k = 1, ∀(i, j) ∈ ΩB (3.8)

∑
i∈ΩN

xgi 6 NG (3.9)

xc0ij,n + xc1ij,n = xcij,n, ∀(i, j) ∈ ΩB, n ∈ {i, j} (3.10)

xhij,k, x
c1
ij,n, x

c
ij,n, x

g
i ∈{0, 1},∀i ∈ ΩN ,(i, j)∈ΩB,

k∈ΩH , n∈{i, j}
(3.11)

where Q(x) = wH · Eξφ(x, ξ) ∼= wH ·
∑
s∈S

pr(s)φ(x, s) (3.12)

In the objective function, cij,k represents the hardening cost of line (i, j) with k-th pole type,

which is also related to the original pole type before hardening. If the original pole type at line

(i, j) is assumed to be 3, then cij,3 = 0. For example, cij,2 equals the cost of replacing all poles

associated with line section (i, j) to pole type 2, and cij,1 equals the cost of upgrading all poles

at line (i, j) to pole type 2 with pole guying. Constraint (3.8) indicates that only one hardening

strategy can be selected for each line. Constraint (3.9) restricts the number of DGs that can be

installed. xcij,n in constraint (3.10) represents whether line (i, j) has a switch or not at the end of

n, which is used in the second-stage problem. The second-stage expected cost is given by equation



www.manaraa.com

23

Table 3.1 Nomenclature for the SMILP ROD model

Indices and sets

ΩB Set of line indices (i, j)

ΩK Set of hardening pole type indices k

ΩL Set of loads indices i

ΩN Set of nodes indices i

ΩS Probability space of stochastic scenarios

S Set of sampled scenario indices s

TH Time duration set of climatic hazard indices t

ξ A random event

Parameters

αL Penalty coefficient of virtual load

B
′
ij Virtual reactance for line (i, j)

ccij Cost of installing sectionalizer at line (i, j)

chij,k Cost of hardening line (i, j) with k-th pole type

cgi Cost of installing a DG at bus i

cLi Cost of shedding 1kWh of i-th load

coi Cost of operating DG at bus i

mij The total number of poles at line (i, j)

M1,M2 Sufficiently large positive numbers

M3,M4 Sufficiently large positive numbers

NG The limit for total number of newly installed DGs

PL,si,t , Q
L,s
i,t Stochastic parameter indicating active/reactive load demand at time t

Pmax
ij,t , Q

max
ij,t Maximum Active/reactive line flow at time t

P g,max
i , Qg,max

i Active/reactive power limits of DG

Reij , X
e
ij Resistance/reactance of line (i, j)

S0 Positive base power
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Table 3.1 (Continued)

V0 Reference voltage magnitude

V max
i , V min

i Maximum/minimum voltage magnitude

ε1, ε2, ε3 Sufficiently small positive numbers

wH The total occurrence of climatic hazards in a year

χsij,k Stochastic parameter indicating repair cost of line (i, j) with k-th pole type

xc0ij,i Binary parameter indicating whether line (i, j) has an existing sectionalizer (1) or not

(0) at the end i

ζsij,k,t Stochastic parameter indicating status of line (i, j) with k-th pole type, damaged (1)

or functional (0) at time t

cr,sij Repair cost of line (i, j)

Decision Variables

λsa,ij,t, λ
s
b,ij,t Dual variable

λsc,i,t Dual variable

µsd,i,t, µ
s
e,i,t Dual variable

P sij,t, Q
s
ij,t Active/reactive power flow of line (i, j) at time t

P g,si,t , Q
g,s
i,t Active/reactive power output of DGs at time t

Psl,ij,t Virtual line flow of line (i, j) at time t

PsL,i,t Virtual load of bus i at time t

θsi,t Voltage angle (radians) at bus i at time t

usij,t Binary variable indicating whether line (i, j) is damaged (1) or not (0) at time t

V s
i,t Voltage magnitude of bus i at time t

wa,si,t Binary variable indicating whether voltage angle is zero (1) or not (0) at bus i at time

t

wb,sij,t Binary variable indicating whether line (i, j) is an active branch (1) or not (0) at time

t

wm,si,t Auxiliary binary variable for setting different restriction on the voltage magnitude at

bus i at time t

wo,sij,t Binary variable indicating whether line is on (1) or off (0) at time t
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Table 3.1 (Continued)

xc1ij,i Binary variable indicating whether a new sectionalizer is deployed (1) or not (0) at

the end i of line (i, j)

xcij,i Binary variable indicating whether line (i, j) has a sectionalizer (1) or not (0) at the

end i of line (i, j)

xhij,k Binary variable indicating whether line (i, j) is hardened with k-th pole type (1) or

not (0)

xgi Binary variable indicating whether a new DG is placed at bus i (1) or not (0)

yc,sij,t Binary variable indicating whether the sectionalizer at line (i, j) is open (1) or not (0)

at time t

yr,si,t Load shedding percentage of load at bus i at time t

(3.12), where wH is the total number of the wind-induced hazards occurring in a year and pr(s) is

the scenario sample probability, which equals 1
|S| .

3.3.2 The Second Stage Problem

In the second stage, the sectionalizers isolate damaged lines with the minimal service inter-

ruption. Since the distribution network is assumed to be radial in this dissertation, the opening

of sectionalizers can separate the network into a few islands. The “healthy islands”, i.e., islands

without damaged lines and with power supply from the substation and/or DGs, are supposed to

operate as stand-alone microgrids; the “unhealthy islands” will be de-energized until they are grad-

ually recovered in the repair stage. During the repair stage, if a part of the de-energized island

becomes healthy and there exists a breaker or sectionalizer that can isolate it from the remaining

unhealthy part, this part will be prioritized in the repair, and operate as a MG. Finally, when

all damaged lines are repaired, the system will return to normal operating condition. For each

healthy island, DG dispatching and load shedding will be used to meet the load demand as much

as possible. It is necessary to develop a mathematic formulation that can model self-healing op-

erations mentioned above. For this purpose, there are two main challenges: (i) the sectionalizers
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and breakers only exist in certain line sections, which poses the challenge to isolate the damaged

part with the minimum customer interruptions; and (ii) the energized networks should keep radial

topologies to reduce potential operation issues, and facilitate the system to return to the normal

operation topology when all damaged lines are repaired.

3.3.2.1 Modeling strategy

A novel modeling method is proposed to meet the challenge (i). The idea is to add a fictitious

fault at a damaged line. A line damage will not necessarily lead to a fault, but the damaged line

should be isolated as if it was faulted. Therefore, the system model is modified by inserting a virtual

node in the middle of each line, then a symmetric ground fault at the virtual node is applied if

the line is damaged. The virtual node is also included in power flow constraints. The second key

modification is to set the bus voltage magnitude feasible region to be {0} ∪ [V min, V max] in (3.27),

where [V min, V max] is the safe range, i.e., 0.9 ∼ 1.1p.u. If the voltage magnitude of a faulted line

is within 0.9 ∼ 1.1p.u and there is no switch on that line, it causes a large fault current, which

violates the power flow constraints (3.20)-(3.21). Consequently, the voltage magnitude at the two

ends of the faulted line is forced to be zero. This fictitious faulting logic propagates to the rest

of the network until a switch can break it. It results in a de-energized island with zero voltages,

which is formed by all line sections that are directly connected to the faulted line without switches

in between. In this case, there is no power flow in the island, given constraint (3.24). Constraint

(3.30) disconnects the DGs on a faulted bus. The load shedding is minimized in the objective

(3.13), which encourages all sectionalizers to block the fault propagation, and maximizes the load

service in the healthy islands.

Take the network shown in Figure 3.5 as an example. Suppose branch AB is damaged, and each

actual node has loads. According to the above-mentioned settings, the virtual node FAB is faulted.

Notice that there is no switch at any end of branch AB. If the voltage magnitude of A is within

0.9 ∼ 1.1 p.u., it will cause a large fault current on branch AFAB, which will exceed the loading

limit of branch AB (this can be ensured in advance, and we can add more virtual nodes if needed).
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Figure 3.5 The illustrative example for isolating a contingency

Thus, the voltage magnitude of node A is forced to be 0 according to its feasible region. That is to

say, node A is faulted. The same process happens to node B. In this way, the fault propagates to

the whole network, until some switches can break it. In this example, there is a switch at the left

end of branch CA. It must be open in the optimal solution, otherwise, the load at node C would

lost power as the fault propagates to node C. Similarly, the switch that is close to node E must

be open in the optimal solution, and the fault will further propagate through node F until there

is a switch. Finally, all line sections that are directly connected to branch AB (i.e., no switches in

between) are de-energized and have zero voltage.

To solve the challenge (ii), the network is represented as a forest. The radiality constraint for

a forest can be constructed according to a theorem in graph theory [48]: A forest of N nodes

has exactly N − Nc edges, where Nc is the number of connected network components. Thus, the

radiality constraint is satisfied iff the number of active branches equals N − Nc. The calculation

of Nc is based on the fact that when power flow equations are satisfied, the voltage angles of a

connected network component (healthy island) have exactly one degree of freedom counted. Hence,

the number of components can be calculated by the degree of freedom of voltage angles. To obtain

this degree of freedom, a virtual DC optimal power flow (VDCOPF) subproblem is formulated.

The optimal solution of this subproblem satisfies that the virtual loads in the same energized island

are nearly equally distributed at active nodes and each energized island has and only has an active

node with zero angle. Since the continuous VDCOPF subproblem has a positive definite quadratic

objective and linear constraints, it can be equivalently replaced by the corresponding Karush-Kuhn-

Tucker (KKT) condition in MILP form. The dual variable of voltage angle in KKT condition is
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used as the indicator of zero angle. The formulation of the above modeling strategies is detailed

below.

Let ΩBF denote the line set considering virtual nodes (each line is divided into two parts by

its virtual node), ΩF denotes the set of virtual nodes, and ΩNF
= ΩN ∪ ΩF . For (i, j) ∈ ΩBF , i is

assumed to represent the original node, where i ∈ ΩN , and j is assumed to represent the virtual

node, where j ∈ ΩF . The power injection direction at node i is assumed to be flowing out, and the

power injection direction at node j is flowing in.

3.3.2.2 Problem Formulation

Least-cost objective

The objective (3.13) is to minimize the total cost of the loss of load, DG operation, repair, and

the weighted penalty cost of voltage angles and the relaxation of line flows given a specific scenario

s and fixed first-stage decisions.

φ(x, s)=min
∑
i∈ΩN

∑
t∈T s

H

cLi y
r,s
i,t P

L,s
i,t ∆t+

∑
i∈ΩN

∑
t∈T s

H

coiP
g,s
i,t ∆t+

∑
(i,j)∈ΩB

cr,sij (3.13)

Line damage status constraint

usij,t =
∑
k∈ΩK

xhij,kζ
s
ij,k,t, ∀(i, j) ∈ ΩB, t ∈ T sH (3.14)

As mentioned in Section 3.2.2.1, we only need to sample ζsij,k,t for all (i, j) independently in the

phase of scenario generation. The line damage status usij,t will be decided by xhij,k and ζsij,k,t.

Line repair cost constraint

cr,sij =
∑
k∈ΩK

xhij,kχ
s
ij,k,,∀(i, j) ∈ ΩB (3.15)

As mentioned in Section 3.2.2.2, the line repair cost cr,sij can be decided by xhij,k and χsij,k.

Line’s on-off status constraints

A line’s on-off status is controlled by two decision variables, xcij , and yc,sij,t, ∀(i, j)∈ΩBF . Here

xcij , ∀(i, j)∈ΩBF is the same expression of xcij,n,∀n∈{i, j}, (i, j)∈ΩB. It is beneficial to introduce a
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new decision variable wo,sij,t,∀(i, j) ∈ ΩBF , t ∈ T sH to represent the line’s on-off status (e.g. wo,sij,t = 1

means line (i, j) is on at time t). Table 3.2 lists the desired values of wo,sij,t given all possible

combinations of xcij and yc,sij,t.

Table 3.2 Evaluation of the on-off status variable

xcij yc,sij,t wo,sij,t xcij yc,sij,t wo,sij,t

0 0 1 1 0 1

0 1 N/A 1 1 0

*N/A: the case should be infeasible.

This evaluation table can be formulated by

yc,sij,t 6 xcij ,∀(i, j) ∈ ΩBF , t ∈ T
s
H (3.16)

xcij + yc,sij,t + 2wo,sij,t > 2,∀(i, j) ∈ ΩBF , t ∈ T
s
H (3.17)

wo,sij,t + yc,sij,t 6 1,∀(i, j) ∈ ΩBF , t ∈ T
s
H (3.18)

yc,sij,t, w
o,s
ij,t ∈ {0, 1},∀(i, j) ∈ ΩBF , t ∈ T

s
H (3.19)

Constraint (3.16) indicates that closing a sectionalizer is feasible only if it exits. If a line has no

sectionalizer or breaker on it (xcij = ycij,t = 0), the line’s status will be on as shown in (3.17); if a

line has a sectionalizer (xcij = 1), the line’s status will be controlled by ycij,t in (3.18).

Line flow limits

−wo,sij,tP
max
ij 6P sij,t6 wo,sij,tP

max
ij ,∀(i, j)∈ΩBF , t∈T

s
H (3.20)

−wo,sij,tQ
max
ij 6Qsij,t6w

o,s
ij,tQ

max
ij ,∀(i, j)∈ ΩBF , t∈T

s
H (3.21)

Constraints (3.20)-(3.21) approximate the line flow limits. If wo,sij,t = 0, the state of line (i, j) is

off, and there is no power flow through i node to j node.
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Linearized DistFlow equations

Constraints (3.22)-(3.24) represent the linearized DistFlow equations, which have been widely

used in distribution systems [49, 17, 34].

∑
{j|(i,j)∈ΩBF

}

P sij,t = P g,si,t −(1−yr,si,t )PLi,t − ε1V
s
i,t, ∀i∈ΩN , t∈T sH (3.22)

∑
{j|(i,j)∈ΩBF

}

Qsij,t = Qg,si,t − (1− yr,si,t )QLi,t,∀i ∈ ΩN , t ∈ T sH (3.23)

V s
i,t −

ReijP
s
ij,t +Xe

ijQ
s
ij,t

V0
− (1− wo,sij,t)M1 6 V s

j,t 6 V s
i,t

−
ReijP

s
ij,t +Xe

ijQ
s
ij,t

V0
+ (1− wo,sij,t)M1, ∀i ∈ ΩNF

, t ∈ T sH
(3.24)

Equations (3.22)-(3.23) represent power balance at each node. Constraint (3.24) indicates the

relationship of voltage magnitudes of neighboring buses. A big M approach is used to decouple

voltages of two buses connected by a line that is off. The network connectivity, which is affected

by line on-off status, is represented by constraints (3.20)-(3.24).

Virtual node power injection constraints

−usij,tM26
∑
k∈{i,j}

P skfij ,t + ε1 ·V s
i,t6 usij,tM2,∀(i, j)∈ΩB, fij∈ΩNF

, t∈T sH (3.25)

−usij,tM26
∑
k∈{i,j}

Qskfij ,t6u
s
ij,tM2,∀(i, j)∈ΩB, fij∈ΩNF

, t∈T sH (3.26)

Constraint (3.25)-(3.26) indicate that if line (i, j) is not damaged, the power injection at the

virtual node fij is zero; if line (i, j) is damaged, constraint (3.25)-(3.26) is canceled off, and if its

voltage is within the normal range, it will cause a large short current.

Voltage magnitude limits

wm,si,t Vi
min 6 V s

i,t 6 wm,si,t Vi
max,∀i ∈ ΩNF

, t ∈ T sH (3.27)

usij,t + wm,sfij ,t
6 1,∀(i, j) ∈ ΩB,fij ∈ ΩF , t ∈ T sH (3.28)

wm,si,t ∈ {0, 1}, ∀i ∈ ΩNF
,t ∈ T sH (3.29)
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The auxiliary binary variable wm,si,t in (3.27) is introduced to give different restrictions on the

voltage magnitude: if wm,si,t =1, the voltage magnitude will be restricted to be within the safe range;

if wm,si,t = 0, then V s
i,t = 0. When line (i, j) is damaged, constraints (3.27)-(3.28) are used to force

the voltage magnitude at the virtual node to be zero (Vfij ,t = 0).

Load shedding ratio limit

1− wm,si,t 6 yr,si,t 6 1, ∀i ∈ ΩN , t ∈ T sH (3.30)

The load shedding ratio limit is shown in constraint (3.30). If the voltage magnitude of a node is

zero, load shedding ratio at that node will be 1. In the objective function, the cost of load shedding

is used as a severity index for a climatic hazard.

DG capacity limits and operation status

0 6 P g,si,t 6 xgiP
g,max
i , ∀i ∈ ΩN , t ∈ T sH (3.31)

0 6 Qg,si,t 6 xgiQ
g,max
i , ∀i ∈ ΩN , t ∈ T sH (3.32)

Constraints (3.31)-(3.32) represent the generation capacity limits of DG at node i if it has been

installed in the first stage.

Radiality constraints

∑
(i,j)∈ΩBF

wb,sij,t =
∑
i∈ΩNF

wm,si,t −
∑
i∈ΩNF

wa,si,t (3.33)

wo,sij,t + wm,si,t − 1 6 wb,sij,t 6 0.5wo,sij,t + 0.5wm,si,t , ∀i ∈ ΩNF
, (i, j) ∈ ΩBF , t ∈ T

s
H

(3.34)

wa,si,t , w
b,s
ij,t ∈ {0, 1},∀i ∈ ΩNF

, (i, j) ∈ ΩBF , t ∈ T
s
H (3.35)

The radiality constraint can be expressed by (3.33), where the number of active branches equals

the total number of active nodes minus the number of active nodes with zero angles [50]. Here a new

binary variable wb,sij,t is introduced to represent the active branch since wo,sij,t cannot fully indicate
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whether that line is energized. For example, if line (i, j) is damaged, its connected lines without

a sectionalizer or breaker will also be de-energized although their line statuses are on. Constraint

(3.34) indicates whether line (i, j) is an active line, is decided by two decision variables, wo,sij,t and

wm,si,t . wm,si,t = 1 can be regarded as an indicator of active node. If line’s status is on (wo,sij,t = 1) and

node i is an active node (wm,si,t = 1), it must be an active branch. Since a small constant current

load (ε1 · V s
i,t) in constraint (3.22) and (3.25) can impose all the nodes’ voltage magnitude in the

de-energized but no fault areas be zero.

The minimality condition of VDCOPF subproblem(
Ps,?L,t,P

s,?
l,t , θ

s,?
t

)
= arg min
Ps
L,t,P

s
l,t,θ

s
t

 ∑
i∈ΩNF

(θsi,t +
αL
2

(PsL,i,t)2)

s.t.

a : −
(

1− wo,sij,t
)
M36Psij,t−S0B

′
ij

(
θsi,t−θsj,t

)
6
(

1− wo,sij,t
)
M3, ∀(i, j)∈ΩBF

b : − wo,sij,tM3 6 Psij,t 6 wo,sij,tM3, ∀(i, j)∈ΩBF

c :
∑

{j|(i,j)∈ΩBF
}
Psij,t−P

g,s
i,t +PsL,i,t=0,∀i∈ΩNF

d : − θsi,t ≤ 0, ∀i ∈ ΩNF

e : − PsL,i,t ≤ 0, ∀i ∈ ΩNF



,

∀t ∈ T sH

(3.36)

VDCOPF subproblem is modeled to realize that a connected network component (healthy MG)

has one and only one degree of freedom of voltage angle under the condition of full DC power

flow equations. The non-negative constraint on voltage angles and the corresponding summation

penalty function in the objective force the minimum value of voltage angles in active components

to be zero. Meanwhile, minimizing the sum of squares of virtual loads in the objective encourages

the virtual loads to be equally distributed on active nodes in healthy MGs. Such a load distribution

plus the standardized B
′
ij (with random noise) ensure the bus of minimum angle (i.e., zero angle)

is unique for each active component. In this way, the number of zero angles in active components

is equal to the number of healthy MGs. Notice that the DC power flow equations (3.36).a-c are

isolated from the actually power flow constraints, i.e., the DisFlow equations in (3.22)-(3.24), by
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the subproblem. Only line on-off status and DG output are passed to the VDC OFF subproblem,

as to avoid the potential conflicts between two suits of power flow equations.

Equation (3.36) can be equivalently replaced by its KKT condition:

Primal feasibility

−
(

1− wo,sij,t
)
M36Ps,?ij,t−S0B

′
ij

(
θs,?i,t −θ

s,?
j,t

)
6
(

1− wo,sij,t
)
M3,∀(i, j)∈ΩBF

, t ∈ T sH

−wo,sij,tM3 6 Ps,?ij,t 6 wo,sij,tM3, ∀(i, j)∈ΩBF
, t ∈ T sH∑

{j|(i,j)∈ΩBF
}
Ps,?ij,t−P

g,s
i,t +Ps,?L,i,t = 0,∀i ∈ ΩNF

, t ∈ T sH

(3.37)

Stationarity

∂L
/
∂Ps,?L,i,t : αLPs,?L,i+λsc,i,t−µse,i,t=0, ∀i ∈ ΩNF

, t ∈ T sH

∂L
/
∂Ps,?ij,t : −λsa,ij,t+λsb,ij,t+λsc,i,t−λsc,j,t=0, ∀(i, j)∈ΩBF

, t ∈ T sH

∂L/∂θs,?i,t :
∑

{j|(i,j)∈ΩBF
}
λsa,ij,tBijS0 + 1− µsd,i,t = 0, ∀i ∈ ΩNF

, t ∈ T sH

(3.38)

Complementary slackness and dual feasibility

0 6 µsd,i,t ⊥ θs,?i,t > 0, ∀i ∈ ΩNF
, t ∈ T sH

0 6 µse,i,t ⊥ P
s,?
L,i,t > 0, ∀(i, j) ∈ ΩNF

, t ∈ T sH
(3.39)

On-off line status

−
(

1−wo,sij,t
)
M46λsa,ij,t6

(
1−wo,sij,t

)
M4,∀i ∈ ΩNF

, t∈T sH

−wo,sij,tM4 6 λsb,ij,t 6 wo,sij,tM4,∀i ∈ ΩNF
, t ∈ T sH

(3.40)

Zero angle indicator constraints

wa,si,t − 1 6
1

2|ΩNF
|
(µsd,i,t − 1 + ε3) 6 wa,si,t , ∀i ∈ ΩN , t ∈ T sH (3.41)

Constraint (3.41) imposes wa,si,t = 1 if µsd,i,t > 1, as µsd,i,t has strong duality on θsi,t. If node i has

zero angle (θsi,t = 0) in the healthy and active MG, its corresponding shadow price µsd,i,t must be

larger than 1 when each component has at least 2 buses (indicated by the coefficients of αL in the

objective).
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3.4 Solution Algorithm

3.4.1 A Compact Notation Form of ROD Model

For brevity, the proposed ROD model is written in a compact notation form. The first-stage

problem is expressed as

min
x

{
c>x+Q(x) : Ax = b

}
(3.42)

where the vector c represents the cost for ROD methods; Q(x) =
∑
s∈S

pr(s)φ(x, s) is the recourse

function of the second stage, which computes the expected value of taking decision x. (3.42) is a

vector form representation of first-stage constraints (3.8)-(3.10), where inequality constraints can

be handled by the introduction of appropriate slack variables. The second stage value function

φ(x, s) is defined as follows:

min
{
q(s)>yR : T (s)x+W (s)yR = h(s)

}
(3.43)

The objective function in (3.43) is a compact expression of the objective function (3.13). Con-

straints (3.14)-(3.35) and (3.37)-(3.41) of the second-stage problem are written as an equality

constraint in (3.43) by introducing appropriate slack variables for those inequality constraints.

3.4.2 Dual Decomposition Algorithm

The simplest approach to solve (3.7)-(3.32) is to apply a standard MIP solver, e.g., CPLEX, to

directly solve its extensive form (EF). However, there is a computational challenge for solving the

EFs of large-scale ROD problems by MIP solvers. Since both first and second stages contain integer

variables, scenario-based decomposition methods, such as progressive hedging and dual decompo-

sition (DD) have better performance than stage-based methods, such as integer L-shaped method,

since they can reduce the computational difficulty by decomposing the problem into scenario-

based subproblems and solving subproblems in parallel [51]. Although the PH algorithm can find

high-quality approximate solutions, it cannot guarantee optimality convergence [52]. We present

a customized DD algorithm combined with branch-and-bound to obtain the optimal solutions of

ROD problems.



www.manaraa.com

35

The main idea of DD algorithm is to obtain lower bounds from Lagrangian dual by relaxing

non-anticipativity constraints and using branch-and-bound to re-establish non-anticipativity [52].

Before we give the pseudocode of the proposed algorithm, it is better to explain the procedure of

obtaining the best lower bound from Lagrangian dual, which will be used in the algorithm.

The deterministic equivalent of ROD problem can be written:

z = min

{
c>x+

∑
s∈S

pr(s)q
>yR,s : (x,yR,s) ∈Ks,∀s ∈ S

}
(3.44)

where Ks = {(x,yR,s) : Ax = b,T (s)x +W (s)yR,s = h(s),x ∈ {0, 1},yR,s = (ysB,y
s
C),ysB ∈

{0, 1},ysC > 0},∀s ∈ S. Eq (3.44) is a large-scale deterministic MILP with a block-angular struc-

ture, which can lead decomposition methods to split it into more manageable scenario-based sub-

problems. To induce a scenario-based decomposable structure, the copies xs, s ∈ S of the first-stage

variables x are introduced to create the following reformulation of (3.44):

min

{∑
s∈S

pr(s)(c
>xs + q>yR,s) : x1 = · · · = x|S|, (xs,yR,s) ∈Ks,∀s ∈ S

}
(3.45)

where x1 = · · · = x|S| = x represents the non-anticipativity constraint, which forces the first-

stage decision not to be dependent on scenarios. The problem (3.45) can be decomposed when the

non-anticipativity constraint is relaxed.

The Lagrangian relaxation with respect to the non-anticipativity constraint is the problem of

finding xs,yR,s,∀s ∈ S, such that

L(µ) = min

{∑
s∈S

[
pr(s)(c

>xs + q>yR,s) + µs(xs − x)
]

: (xs,yR,s) ∈Ks

}
(3.46)

with the condition
∑
s∈S
µs = 0 required for boundness of the Lagrangian. Here µ = (µ1, · · · ,µ|S|)

is the vector of multipliers of the relaxed constraints xs = x, ∀s ∈ S.

The Lagrangian dual function in (3.46) can be separated into

L(µ) =
∑
s∈S

Ls(µ
s) (3.47)

where Ls(µ
s) = min

xs,yR,s

{
pr(s)(c

>xs + q>yR,s) + µsxs : (xs,yR,s) ∈Ks
}
,∀s ∈ S (3.48)
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The Lagrangian dual of Eq. (3.45) then becomes the problem of finding the best lower bound:

zLD = max
µ

{∑
s∈S

Ls(µ
s) :

∑
s∈S

µs = 0

}
(3.49)

The Lagrangian dual (3.49) is a convex non-smooth program and can be solved using subgradient

methods.

According to Theorem 6.2 in [53], p. 327, we can get

zLD = min

{∑
s∈S

pr(s)(c
>xs + q>yR,s) : x1 = · · · = x|S|, (x,yR) ∈ conv×|S|j=1K

s, ∀s ∈ S

}
(3.50)

As the fact that conv×|S|j=1K
s = ×|S|j=1convKs, the optimal value z∗LD of the Lagrangian dual

(3.49) equals the optimal value of the linear program (3.51)

zLB = min

{∑
s∈S

pr(s)(c
>xs + q>yR,s) : x1 = · · · = x|S|, (xs,yR,s) ∈ convKs,∀s ∈ S

}
(3.51)

Then z > z∗LD = z∗LB.

At the same time, the upper bound on z provided by Eq. (3.46) is not bigger than the value of

solving LP-relaxation of Eq. (3.44) [52], written as

zUB = min

{∑
s∈S

pr(s)(c
>xs + q>yR,s) : x1 = · · · = x|S|, (xs,yR,s) ∈Ks

LP , ∀s ∈ S

}
(3.52)

where Ks
LP arises from Ks without the integer requirements.

As a result,

zUB > z > zLD := maxµ

{∑
s∈S

Ls(µ
s) :

∑
s∈S

µs = 0

}
.

A duality gap may occur between the optimal Lagrangian dual and the optimal value due to

the integer requirements. The steps of the modified DD algorithm are shown as Algorithm 1.

3.5 Simulation and Results

3.5.1 Test Case: IEEE-123 Distribution Feeder

The numerical experiments are performed on IEEE 123-bus distribution system [54]. The capital

costs of the proposed ROD methods are shown in Table 3.3, whose life time are assumed to be 30
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Algorithm 1 The customized DD algorithm

1: Initialization: Set z∗ =∞ and let G consists of problem (3.42).

2: Termination: If G=∅, then output x? with z? =c>x? +Q(x?) is optimal.

3: Node Selection:

a) Select and delete a problem Gi from G
b) Solve its corresponding Lagrangian dual (3.49) and its optimal value yields zLD = zLD(Gi)
c) If the associated zLD(Gi) =∞ (infeasibility of subproblem i) then Go to 2.

4: Bounding: If zLD(Gi) > z?LD, Go to 2. Otherwise proceed as follows:

If the first-stage solutions xs, s ∈ S of subproblems are

a) The scenario solutions xs, ∀s ∈ S are identical, then set z∗ := min{z∗, c>xs + Q(xs)} and

delete all problems G′
i with zLD(G′

i) > z?LD from G. Go to 2.

b) The scenario solutions xs,∀s ∈ S are different, then compute a suggestion x̂ :=

Heu(x1, . . . ,x|S|) using heuristic (Try solutions of all scenarios). This heuristic is applied

in the first 11 nodes to facilitate dicovery of an incumbent early in the B&B tree. If x̂ is

feasible, then let z∗ := min{z∗, c>x̂ + Q(x̂)} and delete all problems G′
i with zLD(G′

i) > z?LD
from G, Go to 5.

5: Branching: Select a component x(j) of x and add two new problems to G that differ from Gi
by the additional constraintsx(j)6

⌊
x̂(j)

⌋
and x(j)>

⌊
x̂(j)

⌋
+1, respectively (as x(j) is integer).

Go to 3.

years. Without considering the interest rate, the annual capital cost for purchasing and installing

of each ROD option is 1/30 of the initial investment cost. It is assumed that the backup DGs are

connected in three phase and cannot be installed at the nodes just connected to single or two-phase

lines. The basic load shedding cost is assumed to be $14/kWh [55] and the load shedding cost

parameter cLi in equation (3.7) is the product of the basic load shedding cost and the load priority.

The repair cost of a single pole for 6 pole types is assumed to be the same (χpij,1 = . . .=χpij,6 = $4000).

The operation cost of backup DGs is assumed to be $8kW/h. The time step is ∆t= 2 hour. It

is assumed that there are 5 load priorities, and the voltage range is set to be 0.95p.u ∼ 1.05p.u.

20 scenarios are randomly generated for experiments. Each scenario is assigned with a probability

pr(s)=1/20. All experiments are implemented on the Iowa State University Condo cluster, whose

individual blade consists of two 2.6 GHz 8-Core Intel E5-2640 v3 processors and 128GB of RAM.

All models and algorithms are implemented using the software DDSIP [56].
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Table 3.3 The investment cost of different ROD measures

#No. Methods Cost($)

1 Upgrading pole class 6, 000/pole

2 Adding transverse guys to pole 4, 000/pole

3 The combination of upgrading and guying pole 10, 000/pole

3 Installing a natural gas-fired CHPs as DG 1, 000/kW

with 400kW capacity

4 Adding an automatic sectionlizer 15, 000

*Assume the span of two consecutive poles is 150 ft.

3.5.2 Case1: Comparison with and without ROD

The IEEE 123-bus system is mapped into a coastal city in Texas. According to the histogram

of landfall hurricane frequency in Texas [45], it is assumed wH=2. Figure 3.6(a) represents the wind

speed experienced by poles, which varies with the pole’s distance to the hurricane’s eye. Figure

3.6(b) compares the pole resistance (R3
ij,n) and the wind load S3

ij,n(t). Wind load is determined by

the sustained wind speed on the pole. OnceR3
ij,n<S

3
ij,n(td), the pole would be damaged at time td

and remain damaged until it is repaired, as shown in Figure 3.6(c). When the pole is damaged at

time td, the entire line is out of service.

We compare the cases with and without ROD under 20 different scenarios to quantify the

impact of ROD methods on system resilience. By solving our proposed model, the optimal ROD

decisions are shown in Figure3.7, with a total investment cost of $5, 048, 000. Consider the budget

limitation, the total number of backup DGs is limited to be 5. We compare the second stage cost

from the hurricane hits the system to the point when all damaged lines are repaired as shown in

Figure 3.8. The expected second-stage cost with optimal ROD is 8.93% of that without ROD. It

can seen that the optimal ROD can directly reduce the economic losses during hurricanes.
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Figure 3.6 Simulating a distribution pole’s damage status in a hurricane

To further illustrate the effectiveness of ROD, the percentage of power-served (POPS(t)) which

can depict the resilience curve against time t is expressed as:

POPS(t) =
∑
s∈S

pr(s)

∑
i∈ΩN

(1− yr,si,t )PL,si,t∑
i∈ΩN

PL,si,t

, ∀t ∈ TH (3.53)

Figure 3.9 compares system resilience curves with and without ROD. Compared to 93% POPS

drop in the original system, the system with only optimal line hardening experiences a 84.1% POPS

drop and the system after optimal ROD with multiple coordinated ROD options only experiences

a 23.9% POPS drop. In addition, the POPS drop starts earlier in the original system. Moreover,

systems with optimal ROD have shorter restoration time. For example, the original system needs

112 hours to recover from hurricane, but the systems after optimal ROD only need 20 hours.

These results indicate the system with optimal ROD has stronger surviving ability to withstand

hurricane and faster recovery. The results also indicate that the DGs and automatic sectionalizers
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Figure 3.7 The optimal ROD methods implementation

can contribute to mitigating the hurricane’s impact on the system. Hence, an optimal ROD should

coordinate multiple resilience-enhancing methods.

3.5.3 Case2: The Self-Healing Operation

In order to validate the novelty of our MILP formulation strategy to solve the challenges of self-

healing operation mentioned in section 3.3.2, the time varying system reactions to a hurricane are

analyzed. It is assumed that the distribution system has implemented the optimal ROD measures

as Figure 3.7 shown. We take two operation points at t = 10 and t = 21 in a scenario as illustrative

example. In Figure 3.10, there were 14 lines out of service and isolated by the sectionalizers.

The distribution system itself sectionalized into 5 healthy islands, which operated as MGs. In

each healthy island, there was an active node with zero angle and its network kept radial. The

number of zero angles was equal to the number of healthy islands. At the operation point t = 21,
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Figure 3.8 The second stage cost comparison with and without ROD under different sce-

narios

Figure 3.9 The system resilience curve comparison

6 damaged lines have been repaired. The distribution system reconfigured itself into 3 healthy

islands, made some nodes in the de-energized islands become healthy and isolated them from the

remaining outage areas as shown in Figure 3.11. These results indicate that the proposed modeling

strategy can achieve self-healing operation.

3.5.4 Computational Results

Although the DD algorithm can use the branch and bound to converge eventually to any desired

gap, it may takes days or weeks for the large scale scale ROD problem to get relative gap at 1% [51].
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Figure 3.10 System’s self-healing operation at t = 10

Here it is assumed the relative optimality gap is 8%. The computational results of ROD problem

on the 123-bus test system under different scenarios are shown in the Table 3.4. From Table 3.4, it

can been seen that the case with 20 scenarios takes longer computational time to solve but it still

can converge to the relative optimality gap 8%.

Table 3.4 The solution quality statics for DD algorithm solving ROD problems

#Scenario Upper Bound Lower Bound Wall Time (h)

5 674,286.3 628,434.8 67

10 729,310.1 671,694.6 115

20 1,057,962.1 976,499.1 156

3.5.5 Solution Validation

A multiple replication procedure (MRP) [57] is used to test the stability and quality of the

candidate solutions shown in Figure 3.7. We generate 30 sets of scenarios, and each set has 20
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Figure 3.11 System’s self-healing operation at t = 21

scenarios. The ROD problem is solved for the 30 sets of scenarios to construct the confidence

interval (CI) for the optimality gap. The one-sided CI of the candidate solutions as shown in

Figure 3.7 in the percentage term with regard to the objective value for the optimality gap is

[0, 10.54%]. This small gap shows the candidate solutions are stable and of high quality.

3.6 Summary

A new modeling and solution methodology for resilience-oriented design (ROD) of power dis-

tribution systems against wind-induced climatic hazards is proposed. The spatial-temporal corre-

lations among ROD decisions, uncertainty space, and system operations during and after climatic

hazards are well explored and established. A two-stage stochastic mixed-integer model is proposed

with the objective to minimize the investment cost in the first-stage and the expected costs of the

loss of loads, repairs and DG operations in the second stage. To solve this model, a scenario-based

dual composition algorithm is developed. Numerical studies on the 123-bus distribution system
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demonstrate the effectiveness of optimal ROD on enhancing the system resilience: 1) this model

can build a resilience curve to represent the ROD decisions’ effect on the evolving operation states;

2) the optimal solution of the second stage can model the outage propagation during faults while

minimizing the outage areas and preserve radiality in each energized microgrid after reconfiguration.
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CHAPTER 4. RISK-AVERSE PROACTIVE PREPAREDNESS OF

ELECTRICAL DISTRIBUTION SYSTEMS WITH CONDITIONAL

VALUE-AT-RISK

4.1 Overview

When an extreme weather event like a hurricane strikes an area, its corresponding distribution

system may experience a failure-recovery-cost process: 1) some grid components are damaged; 2)

power outages propagate and customers are out of service for several hours or even several days;

3) the utility makes full use of flexible resources, such as emergency generators and repair crews in

the system to facilitate repair and service restoration. Moreover, this failure-recovery-cost process

can be prolonged, as the damaged transportation network hinders the physical delivery of flexible

resources and decreases crew mobility. Therefore, it is necessary for utilities to proactively prepare

for extreme events to improve the system resilience and hasten the recovery process. This chapter

proposes a two-stage SMILP with CVaR constraints that will strategically manage solar energy in

coordination with various flexible resources to prepare for the forthcoming extreme weather events

to improve distribution system resilience during and after the event. The proposed SMIP considers

the uncertainty of load demand, line damage and solar irradiance. A modified progressive hedging

algorithm is introduced to solve the proposed problem.

4.2 Proposed Methodology

For an upcoming extreme weather event, the distribution system operator can take some strate-

gically sequential actions to enhance system resilience, as shown in Figure 4.1. Several days or

hours before an extreme weather event (e.g., hurricane) hits a distribution system, a more accurate

prediction of the event in terms of severity, affected areas, and trajectory path will be available

from advanced weather foresting methodologies. With these weather data, the distribution system
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Figure 4.1 The sequential actions of the distribution system operator for an upcoming

extreme weather event

operator can quantitatively estimate the impact of the upcoming extreme weather event on the

distribution system through a specific stochastic process. After acquiring the estimated line dam-

age information, the distribution system operator can strategically prepare and manage the flexible

resources in the system within a given budget. During and after the event, the distribution system

operator schedules and dispatches flexible resources, which are allocated in the pre-event proactive

management and preparation module, to provide power for customers as fast as possible.

4.2.1 Uncertainty Estimation under Extreme Weather Events

We consider three kinds of uncertainties under the upcoming extreme weather events: line

damage status, load profile and solar irradiance.

4.2.1.1 Line Damage Status

We simulate the line damage status and the repair times by modeling the complex interactions

among weather, failures to physical infrastructure (e.g., distribution pole), and the repair time of

damaged infrastructure. Figure 4.2 depicts the procedure taken to simulate the damage to the

grid. It is assumed that a line damage status is determined by whether any pole of that line is

damaged given the wind speed. From Figure 4.2, it can be seen that a line damage status, i.e.,
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Figure 4.2 Line damage status simulation procedure

Dk(t) is determined by whether any pole of line k is damaged (Hk,n=0). Line k’s corresponding

repair time is the product of the total number of damaged poles on the line NDk and repair time for

a single pole T
Rpole

k . T
Rpole

k follows the Weibull distribution [58]. The n-th pole’s status (damaged or

functional) is determined by comparing pole resistance Rk,n and pole’ wind load Sk,n(t) according

to the structural limit state function Gk,n(t)=Rk,n−Sk,n(t) in [43].

4.2.1.2 Load Profile

It is assumed that the power demand of load is the product of the hourly forecast load profile

denoted by PLi,ϕ,t(t)/Q
L
i,ϕ,t(t) and the hourly forecast error τ(t):

PLi,ϕ(t) = P fi,ϕ(t)(1 + τ(t)),∀i ∈ ΩN , ϕ, t (4.1)

QLi,ϕ(t) = Qfi,ϕ(t)(1 + τ(t)), ∀i ∈ ΩN , ϕ, t (4.2)

where τ(t) follows a truncated normal distribution with ±15% bounding [59].

4.2.1.3 Solar Irradiance

In a solar-integrated distribution system, the power output of PVs depends on the incident solar

irradiance. At the same time, solar irradiance is determined by the cloud coverage level during and
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after the extreme weather event. So, it is necessary to model the uncertainty of solar irradiance

under an extreme weather event. The value of solar irradiance can be expressed as follows [60]:

Irt = Irt(1− CCLco,t) (4.3)

where Ir represents the maximum solar irradiance at time t; and CCLco represents the corrected

cloud coverage level (CCL), which considers the variability of CCL. The value of the correctedd

CCL follows a normal distribution with mean CCLt and standard deviation 0.05 as follows:

CCLco,t ∼ max{0, N(CCLt, 0.05)} (4.4)

where CCLt is determined by the forecast cloud type, which follows a uniform distribution:

CCLt = U(CCLmin, CCLmax) (4.5)

4.2.2 Proactive Energy Management and Preparation

Six kinds of flexible resources are considered for proactive energy management and preparation:

1) mobile emergency generators (MEG); 2) mobile energy storage (MES) devices; 3) fixed-installed

distributed generators; 4) distributed solar energy resources; 5) repair crews; and 6) network recon-

figuration. In the preparation stage, the distribution system operator preallocates mobile resources,

fuels for diesel DGs, and repair crews. Pre-allocating mobile resources can ensure the earliest pos-

sible electric service recovery, and reduce the influence of road network damage and congestion.

Pre-delivering fuel before an extreme event is critical to make emergency generators well prepared

for islanded operation and service restoration. The repair crews should be pre-staged strategically

to certain locations before the event, such that after the event, they can be dispatched to repair

the damaged components efficiently. After the event strikes the system, the distribution system

operator make full use of the dispatchable energy resources to provide energy for isolated areas that

are not damaged, and to restore critical customers. Pre-assigned crews can provide a faster and

more organized repair response. The flexibility of topology provided by network reconfiguration

can make the distribution grid less prone to damage during the event and thus facilitate efficient



www.manaraa.com

49

recovery after the event. As a result, the distribution system operator can perform the schedule

and dispatch of pre-allocated flexible resources during and after the event to provide power for

customers as fast as possible.

4.3 Two-stage Stochastic Mixed-Integer Programming Formulation with

CVaR Constraints

The climatic hazards (e.g. hurricane, ice-storm, thunderstorm, etc) can significantly affect

distribution system outage risk by increasing the frequency of failures of the power components

and/or inducing severe damage [61]. In preparation for an upcoming extreme weather event, utility

companies and governments are concerned about the monetary costs and benefits of proactive

resource management. Therefore, it is necessary to find a trade-off between the preparation costs

and the costs associated with the potential damage to the distribution system. At the same time,

the natural property of the extreme weather event is low probability, but high damage consequence

and the pre-event allocation decision is only specific for a single upcoming extreme weather event.

These challenges indicate that we need to find a risk-averse approach to mitigate tail risks in the

pre-event allocation problems. As CVaR is an averse risk measure that focuses on high consequence

and can be flexibly determined between the mean loss and the maximum loss, depending on the

value of α, we use CVaR as a track measure to provides different risk preference for the utility to

make allocation decisions.

4.3.1 Conditional Value-at-Risk as a Risk Measure

Let π(x, ξ) be the damage loss associated with the pre-event allocation decision vector x ∈ χ,

and the random vector ξ. For each x, the damage loss π(x, ξ) is a random variable having a

distribution of ξ in R. For each x, we denote ψ(x, ·) as the cumulative distribution function of the

damage loss π(x, ξ):

ψ(x, δ) = P [ξ |π(x, ξ) ≤ δ ] (4.6)
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Definition 1 Value-at-Risk (VaR). Given the confidence level α ∈ (0, 1), the α-VaR of the

damage loss associated with a decision x is the value

δα(x) = min {δ |ψ(x, δ) ≥ α}

= min {δ |P [ξ |π(x, ξ) ≤ δ] ≥ α}
(4.7)

Given Definition 1, VaR is the minimum damage loss that will not be exceeded with probability α.

It also can be interpreted as the smallest damage loss in the (1− α)× 100% worst cases.

The α-tail cumulative distribution function of π(x, ξ) is defined as [62]:

ψα(x, δ) =

0 if δ < δα(x)

[ψ(x, δ)− α]/[1− α] if δ ≥ δα(x)
(4.8)

Note that ψα(x, ·) is another distribution function, which is obtained by rescaling the function

ψ(x, ·) in the interval [α, 1].

Definition 2 Conditional Value-at-Risk (CVaR). Given the confidence level α ∈ (0, 1), the

α-CVaR of the damage loss associated with a decision x is the value [62]

φα(x) = mean of the α-tail distribution of π(x, ξ)

= E [δ |δ ≥ δα(x) ]

(4.9)

Figure 4.3 shows the VaR and CVaR for a specific continuous random variable π(x, ξ). The

cumulative distribution function of π(x, ξ) can be used to find δα(x), and δα(x) can be used in

turn to calculate φα(x).

4.3.2 Conditional Value-at-Risk in Optimization

The function denoted by Fα(x, δ) is defined to describe a characterization of φα(x) and δα(x):

Fα(x, δ) = δ +
1

1− α
E
{

[π(x, ξ)− δ]+
}
,where [t]+ = max {0, t} (4.10)

Fα(x, δ) can be approximated in various ways. For example, this can be done by sampling

the probability distribution of ξ according to its density pr(ξ) [63]. If the sampling generates a
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Figure 4.3 The VaRα and CVaRα of damage loss π(x, ξ)

collection of vectors ξ1, . . . , ξ|S|, then the corresponding approximation to Fα(x, δ) is

F̃α(x, δ) = δ +
1

1− α
∑
ξ∈S

pr(ξ)[π(x, ξ)− δ]+,where [t]+ = max {0, t} (4.11)

Theorem 1 As a function of δ ∈ R, Fα(x, δ) is finite and convex. The α-CVaR of the loss

associated with any x ∈ χ can be determined from

φα(x) = min
δ
Fα(x, δ) (4.12)

and

δα(x) = lower endpoint of argminδFα(x, δ) (4.13)

In particular,

δα(x) ∈ argminδFα(x, δ), φα(x) = Fα(x, δα(x)) (4.14)
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Theorem 2 Minimizing δα(x) with respect to x ∈ χ is equivalent to minimizing Fα(x, δ) over

all (x, δ) ∈ χ× R, in the sense that

min
x∈χ

φα(x) = min
(x,δ)∈χ×R

Fα(x, δ) (4.15)

where, moreover, a pair (x∗, δ∗) achieves the second minimum if and only if x∗ achieves the first min-

imum and δ∗ ∈ argminδFα(x∗, δ). Therefore, in circumstances where the interval argminδFα(x∗, δ)

reduces to a single point, the minimization of Fα(x, δ) over (x, δ) ∈ χ×R produces a pair (x∗, δ∗),

such that x∗ minimizes the α-CVaR and δ∗ gives the corresponding α-VaR. Theorem 2 not only

gives a way to express the CVaR minimization problem in a tractable form, but also allows to

calculate α-CVaR without having to calculate α-VaR first.

Applying Theorem 2 and (4.11), the allocation decision x that minimizes the Conditional Value-

at-Risk of the damage loss at the confidence level α can be expressed as:

min
x∈χ

CV aRα(x) = min
(x,δ)∈χ×R

δ +
1

1− α
∑
ξ∈S

pr(ξ)[π(x, ξ)− δ]+,where [t]+ = max {0, t} (4.16)

In order to describe [π(x, ξ)− δ]+, the additional variables η(ξ) are introduced subject to the

conditions:

π(x, ξ)− δ ≤ η(ξ), η(ξ) ≥ 0 (4.17)

Therefore (4.16) is reformulated as following:

min
(x,δ)∈χ×R

δ +
1

1− α
∑
ξ∈S

pr(ξ)η(ξ)

s.t. π(x, ξ)− δ ≤ η(ξ), η(ξ) ≥ 0

(4.18)

The minimization of pre-event allocation cost and CVaR of potential damage loss in the proac-

tive energy management and preparation optimization problem is formulated as:

min
(x,δ)∈χ×R

c>x+ δ +
1

1− α
∑
s∈S

pr(s)ηs

s.t. π(x, s)− δ ≤ ηs, ηs ≥ 0,∀s ∈ S

(4.19)

where π(x, s) represents the damage loss associated with the pre-event allocation decision vector

x ∈ χ and the random scenario s; the optimal value of δ, δ∗, known as the value-at-risk (VaR)
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represents the minimum value such that the probability that the damage loss cost exceeds or equal

δ∗ is less than or equal to 1−α; ηs is the difference between the damage loss cost of scenario s and

VaR.

4.3.3 Mathematical Formulation

This subsection presents a two-stage stochastic mixed integer linear program (SMILP) with

Conditional Value at Risk (CVaR) constraints, whose model with uncertainty considers the worse

consequence of extreme events. In the first stage, we allocate mobile emergency generators and

energy storage devices, fuel for diesel distributed generators (DGs), and repair crews with the

minimum allocation cost. The second stage is to minimize the expected CVaR of damage loss,

which includes the load shedding penalty cost, damaged line repair cost, fuel consumption cost and

switch operation cost. The nomenclature of this chapter is provided in the Table 4.1.

Table 4.1 Nomenclature for the CVaR-based SMILP model

Indices and sets

ϕ Index for phase number

S Set of scenarios

ΩC Set of crews

ΩCN Set of candidate buses for MEG and MES

ΩD Set of damaged lines

ΩD(r) Set of damaged lines in region r

ΩEG Set of buses with backup emergency generators

ΩES Set of buses with energy storage

ΩESC ΩES ∪ ΩCN

ΩG ΩEG ∪ ΩCN

ΩK Set of lines
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Table 4.1 (Continued)

ΩK(.,i) Set of lines with bus i as the to bus

ΩK(i,.) Set of lines with bus i as the from bus

ΩK(l) Set of lines in loop l

ΩMEG Set of MEG

ΩMES Set of MES devices

ΩN Set of buses

Ωloop Set of possible loops in the distribution network

ΩPV Set of buses with solar cells

ΩC
PV Set of buses with on-grid PVs

ΩG
PV Set of buses with grid-forming PVs

ΩH
PV Set of buses with hybrid on-grid/off-grid PVs

ΩR Set of regions in the network

ΩReg Set of voltage regulators

ΩSub Set of substations

ΩSW Set of switches

Tb Set of time duration before repair

Ta Set of time duration after crews start to repair

T Tb ∪ Ta

Parameters

af/bf Coefficients for calculating fuel consumption

CDi Load shedding cost at bus i

Csw Switch operation cost

CF /Cf Fuel allocation/consumption cost

CGg /C
E
g Allocation cost of MEG/MES

CA/CR Crew allocation/repair cost

Dk,t,s Line status before crews start to repair
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Table 4.1 (Continued)

PLi,ϕ,t/Q
L
i,ϕ,t Active/reactive power demand at bus i, phase ϕ and time t

F T The total amount of available fuel for the utility

FCi Current amount of available fuel at bus i

Fmaxi Maximum amount of fuel allocated to bus i

Irt,s Solar irradiance on PV at time t, and scenario s

M Large positive number

NC Number of crews

N
Cmin/max
r Minimum/maximum number of crews at area r

P/QKmax
k Active/reactive power limit of line k

P/QGmax
i Active/reactive power limits of DGs

P/QPVmax
i Rated active/reactive power of PV at bus i

Pr(s) Probability of scenario s

SES/PV/K Rated apparent power of energy storage device/PV/line

T rk,s The estimated time needed to repair damaged line k in scenario s

Zk The impedance matrix of line k

Umin/Umax The squared voltage limits on each bus and phase

pk Vector with binary entries for representing the phases of line k

ak Vector representing the ratio between the primary and secondary voltages for each

phase of the voltage regulator on line k

ηc/ηd Charging/discharging efficiency

∆t Time step

Decision Variables

Ar Number of crews located at area r

Ei,t,s Available energy of battery i at time t in scenario s

FCi,s Amount of fuel consumed at bus i in scenario s

γk,t,s Binary variable indicates whether switch k is operated in time t in scenario s

Sk,t,s Vector representing the apparent power for line k at time t in scenario s
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Table 4.1 (Continued)

Ui,t,s Vector representing the squared voltage magnitude for bus i at time t in scenario s

wi,t,s Binary variable equals to 0 if bus i is in an outage area at time t and scenario s

hi,t,s Charging/discharging state of the energy storage device

P
ch/dch
i,ϕ,t,s Per-phase active power charged/discharged by the energy storage at bus i, phase ϕ,

time t in scenario s

P/QGi,ϕ,t,s Active/reactive power generated by DG at bus i, phase ϕ, time t in scenario s

P/QKk,ϕ,t,s Active/reactive power flowing on line k, phase ϕ and time t in scenario s

P/QPVi,ϕ,t,s Active/reactive power generated by PV at bus i, phase ϕ, time t in scenario s

QESi,ϕ,t,s Reactive power output of the energy storage device at bus i

uk,t,s Binary variables indicating the status of the line k at time t in scenario s

uGi,t,s Binary variable indicating on/off status of generator at bus i, time t, and scenario s

uMg,i,t,s Binary variable indicating on/off status of mobile generator g at bus i, time t in

scenario s

vfk,ϕ,t,s Virtual flow on line k

vSi,ϕ,t,s Virtual flow from the virtual source to bus i, phase ϕ and time t in scenario s

xMEG
i Binary variable equals 1 if a mobile generator is staged at bus i

xMES
i Binary variable equals 1 if a mobile energy storage device is staged at bus i

xFi Amount of fuel allocated to generator at bus i

yi,t,s Connection status of the load at bus i, time t, and scenario s

zk,t,s Binary variable equals 1 if line k is being repaired at time t in scenario s

zak,t,s Auxiliary variable used to ensure a damaged line is repaired in consecutive hours
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4.3.3.1 Objective

The objective of the proactive resource management problem is to minimize the allocation cost

of mobile emergency units, fuel and repair crews from other places, and the CVaR of the damage

loss at the confidence level α:

min
∑
i∈ΩCN

( ∑
g∈ΩMES

CEg x
MES
g,i +

∑
g∈ΩMEG

CGg x
MEG
g,i

)
+
∑
i∈ΩG

CFxFi

+CA(
∑
r∈ΩR

xAr − xAfixed) + δ +
1

1− α
∑
s∈S

pr(s)ηs

(4.20)

4.3.3.2 First-Stage Constraints

The constraints for the first stage are modeled as follows:

Mobile Sources Allocation

∑
i∈ΩCN

xMEG
g,i 6 1, ∀g ∈ ΩMEG (4.21)

∑
i∈ΩCN

xMES
g,i 6 1,∀g ∈ ΩMES (4.22)

∑
g∈ΩMES

xMES
g,i +

∑
g∈ΩMEG

xMEG
g,i 6 1,∀i ∈ ΩCN (4.23)

Constraints (4.21) and (4.22) state that a MEG and MES can be placed at one bus, respectively.

We assume that each bus can have only one mobile unit, which is enforced by (4.23).

Fuel Allocation

Define ΩG = ΩEG ∪ ΩCN , where ΩEG is the set of buses that have emergency generators, and

ΩCN is the set of candidate buses for mobile units. The fuel allocated to these buses must be limited

to the amount of fuel available, as follows:

∑
i∈ΩG

xFi 6 F T (4.24)

Each location can have a limited number of fuel, and the location may already have fuel on site.

The limits on the amount of fuel allocated to each bus are set by the following constraint:

FCi 6 xFi 6 Fmaxi ,∀i ∈ ΩG (4.25)
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Crew Allocation

We assume that the distribution network is divided into different predefined regions, r =

{1, 2, ..., |ΩR|}, and each region contains a set of distribution lines ΩK(r). Each region r is as-

signed with a specific number of crews xAr . If the total number of crews is NC , then the number of

crews in each region is found using: ∑
r∈ΩR

xAr 6 NC (4.26)

The number of crews is limited in each region depending on the capacity of the staging locations.

NCmin
r 6 xAr 6 NCmax

r , ∀r ∈ ΩR (4.27)

4.3.3.3 Second-Stage Constraints

The second-stage constraints include CVaR constraints, unbalanced power flow operation, en-

ergy storage constraints, network reconfiguration, PV system operation, and crew repair procedure.

CVaR Constraints

πs =
∑
i∈ΩG

CfFCi,s +
∑
∀t

∑
∀ϕ

∑
∀i
CDi (1− yi,t,s)PLi,ϕ,t,s

+
∑
t∈T

∑
k∈ΩD

CRk (1− uk,t,s) +
∑
∀t

∑
k∈ΩSW

Cswγk,t,s,∀s
(4.28)

πs − δ 6 ηs, ∀s (4.29)

ηs > 0, δ ∈ R,∀s (4.30)

Constraint (4.28) represents the damage loss cost in a scenario, which includes load shedding

penalty cost, fuel consumption cost, crew repair cost and switch operation cost. Constraint (4.29)

and (4.30) impose the positive difference between the damage loss cost of scenario s and VaR.

Dispatchable Generators and Substation Limits

Two binary variables uGi,t,s and uMg,i,t,s are introduced to define the on-off status of emergency

generators and mobile generators, respectively. These variables are necessary in order to evaluate
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the amount of fuel consumed, which is discussed in section 4.3.3.3. Variable uMg,i,t,s is correlated to

xMEG
g,i using the following constraints:

uMg,i,t,s 6 xMEGg,i , ∀g ∈ ΩMEG, i ∈ ΩCN , t, s (4.31)

The limits on generators are then imposed as follows:

0 6 PGi,ϕ,t,s 6 uGi,t,sP
Gmax
i , ∀i ∈ ΩEG, ϕ, t, s (4.32)

0 6 QGi,ϕ,t,s 6 uGi,t,sQ
Gmax
i , ∀i ∈ ΩEG, ϕ, t, s (4.33)

0 6 PGi,ϕ,t,s 6
∑

g∈ΩMEG

uMg,i,t,sP
Gmax
g , ∀i ∈ ΩCN , ϕ, t, s (4.34)

0 6 QGi,ϕ,t,s 6
∑

g∈ΩMEG

uMg,i,t,sQ
Gmax
g , ∀i ∈ ΩCN , ϕ, t, s (4.35)

The summation
∑

g∈ΩMEG
uMg,i,t,s is used to define the types of mobile DGs available with dif-

ferent power ratings. The formulations can be simplified in case of homogeneous mobile DGs. The

limits on the substation active and reactive power are set by:

0 6 PSSi,ϕ,t,s 6 PSSmax
i , ∀i ∈ ΩSub, ϕ, t, s (4.36)

−QSSmax
i 6 QSSi,ϕ,t,s 6 QSSmax

i , ∀i ∈ ΩSub, ϕ, t, s (4.37)

Line Limits

The linearized three phase power flow limit constraints are shown as follows [64]:

−uk,t,s pk,ϕSKk 6 PKk,ϕ,t,s 6 uk,t,s pk,ϕS
K
k , ∀k∈ΩK , ϕ, t, s (4.38)

−uk,t,s pk,ϕSKk 6 QKk,ϕ,t,s 6 uk,t,s pk,ϕS
K
k , ∀k∈ΩK , ϕ, t, s (4.39)
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−
√

2(uk,t,s pk,ϕ)SKk 6 PKk,ϕ,t,s +QKk,ϕ,t,s 6
√

2(uk,t,s pk,ϕ)SKk , ∀k ∈ ΩK , ϕ, t, s (4.40)

−
√

2(uk,t,s pk,ϕ)SKk 6 PKk,ϕ,t,s −QKk,ϕ,t,s 6
√

2(uk,t,s pk,ϕ)SKk , ∀k ∈ ΩK , ϕ, t, s (4.41)

Node Balance and Voltage Law

∑
∀j∈ΩSub
j=i

P ssj,ϕ,t,s +
∑

∀k∈ΩK(.,i)

PKb,ϕ,t,s +
∑
∀j∈ΩG
j=i

(PGj,ϕ,t,s − P chj,ϕ,t,s + P dchj,ϕ,t,s) +
∑
∀j∈ΩPV
j=i

PPVj,ϕ,t,s =
∑

∀k∈ΩK(i,.)

PKk,ϕ,t,s + PLi,ϕ,tyi,t,s,

∀i ∈ ΩN , ϕ, t, s (4.42)

∑
∀j∈ΩSub
j=i

Qssj,ϕ,t,s +
∑

∀k∈ΩK(.,i)

QKk,ϕ,t,s +
∑
∀j∈ΩG
j=i

(QGj,ϕ,t,s +QESj,ϕ,t,s) +
∑
∀j∈ΩPV
j=i

QPVj,ϕ,t,s =
∑

∀k∈ΩK(i,.)

QKk,ϕ,t,s +QLi,ϕ,t yi,t,s,

∀i ∈ ΩN , ϕ, t, s (4.43)

Uj,t,s − Ui,t,s + Z̄k,sS
∗
k,t,s + Z̄∗k,sSk,t,s 6 (2 − pk − uk,t,s)M, ∀k ∈ ΩK\ΩReg, t, s (4.44)

Uj,t,s − Ui,t,s + Z̄k,sS
∗
k,t,s + Z̄∗k,sSk,t,s > −(2 − pk − uk,t,s)M, ∀k ∈ ΩK\ΩReg, t, s (4.45)

Constraints (4.42)-(4.43) are 3-phase active and reactive power node balance constraints. Con-

straints (4.44)-(4.45) represent Kirchhoff’s voltage law. The detailed explanation for these two

constraints can be found in [65].

Voltage Regulators

−(2− uk,t,s − pk)M 6 a2
kUj,t,s −Ui,t,s,∀k ∈ ΩReg, t, s (4.46)

a2
kUj,t,s −Ui,t,s 6 (2− uk,t,s − pk)M, ∀k ∈ ΩReg, t, s (4.47)

Constraints (4.46) and (4.47) model the relationship between the voltage magnitudes on both

sides for a three-phase voltage regulator, with i as the primary side and j as the secondary side.
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The vector ak ∈ R3×1 is the ratio between the primary and secondary winding for each phase,

where the ratio is assumed to be constant [66].

Fuel Consumption

The fuel consumption for emergency DGs and MEG are calculated as follows [67]:

FCi,s =
∑
∀t
bfu

G
i,t,sP

Gmax
i + af

∑
∀t

∑
∀ϕ

PGi,ϕ,t,s, ∀i ∈ ΩEG, s (4.48)

FCi,s =
∑
∀t

∑
g∈ΩMEG

bfu
M
g,i,t,sP

Gmax
g + af

∑
∀t

∑
∀ϕ
PGi,ϕ,t,s,∀i∈ΩCN , s (4.49)

where bf and af are coefficients of the consumption in l/kWh. The fuel consumption coefficients

are set to af = 0.246 l/kWh and bf = 0.08145 l/kWh in this study [67]. The total amount of fuel

consumed by a generator must be less than or equal to the available fuel:

FCi,s 6 xFi , ∀i ∈ ΩG, s (4.50)

Energy Storage System Constraints

The energy storage systems considered in this paper are batteries. Binary variable h represents

the charging (1) and discharging (0) state of the energy storage device. If a battery is located in

an area that have excess energy, the battery will be charged so that it can be later used to energize

other locations as the system is repaired.

The charging and discharging limits for i ∈ ΩES are defined as follows:

0 6 P chi,ϕ,t,s 6 hi,t,sP
ch,max
i ,∀i ∈ ΩES , ϕ, t, s (4.51)

0 6 P disi,ϕ,t,s 6 (1− hi,t,s)P dis,max
i , ∀i ∈ ΩES , ϕ, t, s (4.52)

To avoid nonlinearity, we use the big M method to indicate whether a mobile storage device is

charging or discharging:

0 6 P chi,ϕ,t,s 6 hi,t,sM,∀i ∈ ΩCN , ϕ, t, s (4.53)

0 6 P disi,ϕ,t,s 6 (1− hi,t,s)M,∀i ∈ ΩCN , ϕ, t, s (4.54)
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The charging/discharging limits are then represented by the following constraints:

0 6 P chi,ϕ,t,s 6
∑

g∈ΩMES

xMES
g,i P dis,max

g ,∀i ∈ ΩCN , ϕ, t, s (4.55)

0 6 P disi,ϕ,t,s 6
∑

g∈ΩMES

xMES
g,i P dis,max

g ,∀i ∈ ΩCN , ϕ, t, s (4.56)

where the sum of xMES
g,i is used similarly to constraint (4.34). The ESSs considered in this study

can provide both active and reactive power. The reactive power is limited using the following

constraints [68]:

−QESmax
i 6 QESi,ϕ,t,s 6 QESmax

i ,∀i ∈ ΩES , ϕ, t, s (4.57)

−
∑

g∈ΩMES

xMESg,i QESmax
i 6 QESi,ϕ,t,s 6

∑
g∈ΩMES

xMESg,i QESmax
i , ∀i∈ΩES , ϕ, t, s (4.58)

The next set of constraints represents the energy level for each ESS:

Ei,t,s = Ei,t−1,s + ∆t(ηc
∑
∀ϕ

P chi,ϕ,t,s −
∑
∀ϕ P

dis
i,ϕ,t,s

ηd
),∀i ∈ ΩESC , t, s (4.59)

Emin
i 6 Ei,t,s 6 Emax

i ,∀i ∈ ΩES , t, s (4.60)

Emin
g

∑
g∈ΩMES

xMES
g,i 6 Ei,t,s 6 Emax

g

∑
g∈ΩMES

xMES
g,i ,∀i ∈ ΩCN , t, s (4.61)

Reconfiguration and Fault Isolation

wi,t,sUmin 6 Ui,t,s 6 wi,t,sUmax , ∀i ∈ ΩN , t, s (4.62)

wi,t,s + wj,t,s 6 2uk,t,s,∀k ∈ ΩB\ΩSW , t, s (4.63)

∑
k∈ΩB(l)

uk,t,s 6 |ΩB(l)| − 1,∀l ∈ Ωloop, t, s (4.64)
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γk,t,s ≥ uk,t,s − uk,t−1,s, ∀k ∈ ΩSW , t, s (4.65)

γk,t,s ≥ uk,t−1,s − uk,t,s, ∀k ∈ ΩSW , t, s (4.66)

Constraint (4.62) sets the different restrictions on the voltage: if wi,t,s = 0, the bus node i is

de-energized and Ui,t,s = 0; otherwise, the voltage will be restricted to be within the safe range. If

a line is damaged, constraint (4.63) will force the node voltages of that line to be zero. Combining

with constraints (4.44)-(4.47), constraint (4.62) and (4.63) can model the outage propagation on

the rest of the network until a circuit breaker or sectionalizer isolates the fault. Constraint (4.64)

represents the radiality constraint. In this paper, it is assumed that all the possible loops in the

network and lines associated with them have been identified by the depth-first search method.

Constraint (4.65)-(4.66) restricts the number of switching operations.

PV System Constraints

Three types of PV systems are considered to facilitate the supply continuity during and after

extreme weather events. Let ΩPV = ΩG
PV ∪ ΩH

PV ∪ ΩC
PV , where ΩG

PV represents on-grid PV that

will be switched off during an outage; ΩH
PV represents hybrid on-grid/off-grid PV that operates

on-grid in normal conditions and off-grid during an outage; ΩC
PV represents grid-forming PV that

can restore part of the undamaged network if the fault is isolated. As the active power output of

a PV depends of the rating of solar cell and solar irradiancce, the output power from the PVs can

be written using the following constraints [69]:

0 6 PPVi,ϕ,t,s 6 P̄PVi , ∀i ∈ ΩPV \ΩG
PV , ϕ, t, s (4.67)

0 6 PPVi,ϕ,t,s 6 wi,t,sP̄
PV
i , ∀i ∈ ΩG

PV , ϕ, t, s (4.68)

where P̄PVi =
Irt,s

(1000W/m2)
PPVmax
i ,∀i∈ΩPV , ϕ, t, s (4.69)
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As advanced PV inverters enable PVs to provide reactive power support, the reactive output

can be constrained by (4.70) and (4.71):

−QPVmax
i 6 QPVi,ϕ,t,s 6 QPVmax

i ,∀i∈ΩPV \ΩG
PV , ϕ, t, s (4.70)

−wi,t,sQPVmax
i 6 QPVi,ϕ,t,s 6 wi,t,sQ

PVmax
i ,∀i ∈ ΩG

PV , ϕ, t, s (4.71)

As the different types of PVs have different connection restrictions during an outage, it is

necessary to model the appropriate connection constraints for PVs. Authors in [59] constructed

a set of connectivity constraints to identify the energized buses in the network by using virtual

sources, load, and flow:

∑
j∈ΩC

PV ∪ΩG∪ΩSub

j=i

vSj,ϕ,t,s +
∑

k∈ΩK(.,i)

vfk,ϕ,t,s = wi,t,s +
∑

k∈ΩK(.,i)

vfk,ϕ,t,s,∀i ∈ ΩN , ϕ, t, s (4.72)

−(uk,t,s pk,ϕ)M 6 vfk,ϕ,t,s 6 (uk,t,s pk,ϕ)M,∀k ∈ ΩK , ϕ, t, s (4.73)

0 6 vSi,ϕ,t,s 6
(∑
∀j∈ΩSub
j=i

P ssj,ϕ,t,s +
∑
∀j∈ΩG
j=i

(PGj,ϕ,t,s + P dchj,ϕ,t,s) +
∑
∀j∈ΩC

PV
j=i

PPVj,ϕ,t,s
)
M, ∀i ∈ ΩN , ϕ, t, s (4.74)

wi,t,s ≥ yi,t,s,∀i ∈ ΩN\{ΩG ∪ ΩC
PV ∪ ΩH

PV }, t, s (4.75)

wi,t,s + (
∑

g∈ΩMES

xMES
g,i +

∑
g∈ΩMEG

xMEG
g,i ) ≥ yi,t,s,∀i ∈ ΩCN , t, s (4.76)

Repair Process Constraints

To model the repair process, we solve an allocation problem where crews are allocated to

damaged components at each time step.

uk,t,s = Dk,t,s, ∀k ∈ ΩD,∀t ∈ Tb, s (4.77)



www.manaraa.com

65

∑
∀k∈ΩD(r)

zk,t,s 6 xAr ,∀r ∈ ΩR,∀t ∈ Ta, s (4.78)

∑
∀t
zk,t,s = T rk,s, ∀k ∈ ΩD,∀t ∈ Ta, s (4.79)

t−1∑
τ=1

zk,τ,s
T rk,s

− 1 + ε 6 uk,t,s 6
t−1∑
τ=1

zk,τ,s
T rk,s

,∀k ∈ ΩD, ∀t ∈ Ta, s (4.80)

zak,t,s > zk,t,s − zk,t−1,s,∀k ∈ ΩD, t > |Tb|+ 1, s (4.81)

zak,|Tb|+1,s = zk,|Tb|+1,s, ∀k ∈ ΩD, s (4.82)

∑
∀t∈Ta

zak,t,s = 1,∀k ∈ ΩD, s (4.83)

0 6 zak,t,s 6 1,∀k ∈ ΩD, ∀t ∈ Ta, s (4.84)

Constraint (4.77) represents line status before crews start to repair. Constraint (4.78) limits the

number of repairs being conducted in each region according to the number of crews xAr available.

Constraint (4.79) defines the repair time for each damaged line. Constraint (4.80) sets the status

of the line to be 1 once it is repaired. For example, let T rk,s = 3 and zk,t,s = {0, 0, 1, 1, 1, 0, 0}, then

uk,t,s = {0, 0, 0, 0, 0, 1, 1}. For t = 6 and ε = 0.001, constraint (4.80) becomes 0.668 6 uk,6,s 6 1,

which forces uk,6,s = 1. An auxiliary variable zak,t,s is introduced to ensure that the repairs are done

in consecutive hours. For example, z1,t,1 = [0, 0, 1, 1, 1, 0] is valid, but z1,t,1 = [1, 0, 0, 1, 1, 0] is not

valid, ∀t = {1, . . . , 6}. Constraint (4.81) forces the value of zak,t,s to be 1 if zk,t,s goes from 0 to 1.

Constraint (4.82) defines zak,t,s for the first time period, and constraint (4.83) ensures that zak,t,s is

equal to 1 only once.
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4.4 Solution Algorithm

4.4.1 The Compact Notation of Pre-Event Preparation Problem

In order to facilitate the solution discussion, the CVaR-based stochastic optimization model can

be written in a compact notation form:

zα−CV aR = min
x,y,δ,r

{c>x+ δ +
1

1− α
∑
s∈S

pr(s)ηs : δ + ηs

> q(s)>y(s), (x, y(s)) ∈ Os, δ ∈ R, ηs ∈ R+,∀s ∈ S}.

(4.85)

where Os = {(x, y (s)) : Ax = b, x ∈ X,Wy (s) = h (s)− T (s)x, y (s) ∈ Y }.

4.4.2 Progressive Hedging Algorithm

The general combination, NP-hard natural of mixed-integer problems and uncertainty, leads to

the considerable difficulty in solving SMILP pre-event preparation models. For small-scale SMILP

pre-event preparation problems, standard MILP solvers can be used to directly solve their extensive

forms (EFs) presented in (4.85). However, for large-scale pre-event preparation problems, their EFs

are too large to solve using in a reasonable run-time using available MIP solvers. In addition, the

commonly used stage-based decomposition algorithm, Benders decomposition, relies heavily on the

convexity of φ(x, s) and cannot be directly applied to the case with integer variables in the second

stage [70]. Rockafellar and Wets proposed the Progressive Hedging (PH) decomposition algorithm

as a heuristic [71] to effectively solve stochastic mixed-integer problems. PH algorithm can reduce

the computational difficulty by decomposing the EF in (4.85) into scenario-based subproblems and

solving subproblems in parallel. PH has been successfully implemented in solving unit commitment

problems [70, 72, 73].

For such a two-stage CVaR-based SMIP prevent preparation problem, the modified PH algo-

rithm is sketched in Algorithm 1. The PH algorithm is initialized by solving the individual-scenario

problems in Step 1. In each iteration, PH solves subproblems individually and aggregates the so-

lutions to obtain the expected value x̂k. The estimates of multipliers w(s)k are updated in Step

4 using a specific penalty parameter ρ to enforce the non-anticipative policy. The performance of
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Algorithm 2 PH Algorithm for CVaR-base SMILP

1: Initialization:Let k ← 0 and wk
s ← 0, ∀s ∈ S. For each s ∈ S, compute:

(xk+1
s ,yk+1

s ) := argmin
(xs,ys)

{
c>xs + δs + 1

1−αηs : δs + ηs > q>s ys, (xs,ys) ∈ Os, δs ∈ R, ηs ∈ R+

}
2: Iteration update: k ← k + 1

3: Aggregation: x̂k :=
∑
s∈S

psx
k
s

4: Update multiplier: wk
s = wk−1

s + ρ(xks − x̂k), s ∈ S
5: Decomposition: For each s ∈ S, compute:

(xks ,y
k
s ) := argmin

(xs,ys)

{
c>xs + δs + 1

1−αηs +wk−1
s xs + ρ

2‖xs − x̂k−1‖2 : δs + ηs > q>s ys, (xs,ys) ∈

Os, δs ∈ R, ηs ∈ R+

}
6: Termination: If all first-stage scenario solutions xks agree, go to Stop; otherwise go to Step 2

PH depends on the value of ρ. The decomposition step (Step 5) of each iteration involves solving

variants of subproblems that are augmented with a linear term proportional to the multiplier w(s)k

and a squared two norm term penalizing deviation of x(s)k from x̂k−1.

4.4.3 Lower Bounds on CVaR-Based Stochastic Integer Programs

Although the convergence of PH is not guaranteed for stochastic mixed-integer problems, com-

putational studies have shown that PH can find solutions with acceptable optimality gap for prac-

tical applications [73]. However, it is still necessary to evaluate the quality of PH solutions. Gade

et al. [51] proposed an approach to calculate the lower bounds in any iteration of PH simply by

solving an optimization problem. The lower bounds not merely allow us to assess the quality of

the solutions in each iteration, but also can provide lower bounds for solution methods that rely

on lower bounds like branch-and-bound. The proposition of lower bound in [51] can be restated as

follows:

Proposition 1: Let wξ, ξ ∈ S, satisfies
∑
ξ∈S

pξwξ = 0. And Dξ(wξ) := min
{
pξ(c

>xξ + q>ξ yξ +

wξxξ) : (xξ,yξ) ∈ Oξ
}
.

Then D(w) :=
∑
ξ∈S

Dξ(wξ) 6 z∗.
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In each iteration, the lower bound D(w) on the optimal objective value z∗ is computed using

the multiplier wk
ξ . These lower bounds are reported in our numerical results. The major advantage

is that we can obtain the lower bounds for a stochastic mixed-integer problem even when the

sub-problems are not solved to the optimality, and a lower bound can be easily calculated with

approximately the same effort as one PH iteration.

By applying Proposition 1 to the two-stage CVaR optimization stochastic integer program

(4.85), we show how the lower bounds on the optimal objective value of z∗CV aR can be computed.

Proposition 2: Let wξ, ξ ∈ S, satisfies
∑
ξ∈S

pξwξ = 0 and w′ξ, ξ ∈ S, satisfies
∑
ξ∈S

pξw
′
ξ = 0. Let

Dξ(wξ,w
′
ξ) := min

x,y,δ,η

{
c>xξ + δξ+

1
1−αηξ+w

>
ξ xξ+w

′
ξδξ :δξ + ηξ > q>ξ yξ, (xξ,yξ)∈Oξ, δξ∈R, ηξ∈R+

}
.

Then D(w,w′) :=
∑
ξ∈S

Dξ(wξ,w
′
ξ) 6 z∗CV aR.

However, solving problem D(w,w′) in Proposition 1 is not straightforward as solving problem

D(w) in Proposition 2. More challenges come along with the additional first stage variable δ and

second stage variables ηξ, ∀ξ ∈ S in the problem Dξ(wξ,w
′
ξ). We find out problem D(w,w′) can

turn out to be an unbounded optimization problem. In order to find valid lower bounds for two-

stage CVaR optimization stochastic integer programs, we first need to make the CVaR variable δ

to be bounded while maintaining the original set of feasible solutions. We now show upper and

lower bounds for the optimal value of variable that lead to tight lower bounds of z∗CV aR and can

be obtained with least computational effort. Furthermore, the bounds on variable δ will speed up

the convergence of Progressive Hedging algorithm at the same time.

Proposition 3: Let δ∗ be the optimal solution of variable δ for problem (4.85), then

L = min
ξ∈S

{
min
x,y

{
c>x+ q>ξ y : (x,y) ∈ Oξ

}}
≤ δ∗

U = max
ξ∈S

{
max
x,y

{
c>x+ q>ξ y : (x,y) ∈ Oξ

}}
≥ δ∗
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4.5 Numerical Results

4.5.1 Input Data

The modified IEEE 123-bus distribution feeder [65] is used as a test case for the pre-event

resource allocation problem. The network is modified by including 2 dispatchable DGs, 18 new

switches, 5 PVs and 2 BESSs. The 2 DGs are rated at 500 kW and 410 kVAr. PVs in on-grid and

hybrid systems are rated at 50 kW, and the PV at bus 62 is rated at 900 kW. The BESSs at bus 2

and 62 are rated at 50 kW/132 kWh and 500 kW/ 2100 kWh, respectively. The basic load shedding

cost is assumed to be $14/kWh and the load shedding cost parameter CDi in equation (4.28) is the

product of the basic load shedding cost and the load priority. It is assumed the all the pre-allocated

resources are transported from warehouses with 100 miles distance. The utility has 3 fixed repair

crew and two crew depot in the system. The cost parameters for the simulation is shown in Table

4.2. The stochastic models and algorithms are implemented using the PySP package in Pyomo.

IBM’s CPLEX 12.6 mixed-integer solver is used to solve all subproblems. The experiments were

performed on Iowa State University’s Condo cluster, whose individual blades consist of two 2.6

GHz 8-Core Intel E5-2640 v3 processors and 128 GB of RAM.

Table 4.2 The cost parameters for simulation

Name Value Name Value Name Value

CEg $500/unit CF $4/kwh CR $225/line

CGg $400/unit CA $4285/crew Csw $8
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Figure 4.4 The optimal pre-event resource preparation at confidence level α = 95%

4.5.2 Pre-event Resource Preparation Results with α = 95%

The optimal pre-event resource preparation solution depends on the risk aversion. Now given

the confidence level α = 95%, the pre-event resource preparation model, with 20 damage scenarios,

is solved in 2.62 hours. The optimal first-stage decision variables (locations of mobile devices and

crews) are shown in Figure 4.4. Four MEG are installed at bus 1, 18, 95, and 160 separately.

Three MES are placed at bus 44, 51, and 56. Fuel is pre-delivered to buses with DG and MEG.

10 crews are even allocated to depot 1 and depot 2. To do resilience analysis and risk analysis

in the following subsections, we also present optimal pre-event resource preparation at different

confidence level α in Figure 4.5.
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Figure 4.5 The optimal pre-event resource preparation at different confidence level α

4.5.3 Resilience Analysis

To evaluate the preparation results with different α, we generate an additional random scenario

and test the response of the system. The generated scenario has 15 damaged lines and we assume

that the substation is not receiving power from the transmission system for 12 hours starting from
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Figure 4.6 The damaged lines in the additional random scenario with α = 95%

8 : 00 am. Figure 4.6 presents locations of damaged lines on the pre-allocated test system at

confidence level α = 95%. Figure 4.7 shows the comparison of the percentage of power served load

during the event, and after the repair process starts with different α. Table 4.3 gives th pre-event

allocation cost, the amount of load served, and average outage duration with different α. We also

compare the resilience improvement percentage and outage hour decreased percentage in Table 4.3.

From Table 4.3, it can be seen that the pre-event preparation solution at α = 95% is the best option

for utility to allocate resources before the event. Because this solution improves 13% resilience and

reduces 23% outage hour, although the allocation cost is 3.28% higher than the ER solution.
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Figure 4.7 Load served percentage comparison for different confidence level α

Table 4.3 The amount of load served, average outage duration and pre-event allocation

cost with different confidence level α

α
Allocation

Cost ($)

Load Served

(kWh)

Resilience Improved

Percentage (%)

Average Outage

Duration (h)

Outage Decreased

Percentage(%)

0 91, 695.00 51, 397.60 11.38

10% 72, 479.56 54, 555.18 6.14 10.24 9.93

30% 89, 488.00 57, 482.13 11.84 9.15 19.54

60% 80, 632.76 56, 830.52 10.57 9.27 18.51

95% 94, 705.00 58, 260.10 13.35 8.66 23.89

4.5.4 Risk Analysis

To show the value of the proposed CVaR-based model, we use the value of the CVaR solution

(VCS) proposed in [74] to measure how much we gain by considering CVaR compared to expected

risk (ER). VCSα is similar to the value of stochastic solution used to compare the performance of

stochastic solution with the performance of the deterministic solutions in the stochastic environment

and can be written as follows:

VCSα =
CVaRαof the ER solution−Optimal CVaRα

Optimal CVaRα

(4.86)
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where ER solution represents the optimal first-stage allocation solution from solving the general

stochastic programming model. The ER-based optimization model of pre-event preparation prob-

lem can be expressed as follows:

min
∑
i∈ΩCN

( ∑
g∈ΩMES

CEg x
MES
g,i +

∑
g∈ΩMEG

CGg x
MEG
g,i

)
+
∑
i∈ΩG

CFxFi + CA(
∑
r∈ΩR

xAr − xAfixed) +
∑
s∈S

pr(s)πs

(4.87)

s.t. Constraints (4.23)− (4.28), (4.31)− (4.84)

Similarly, we also define the value of ER solution over CVaR solution as follows:

VRSα =
Optimal ER− ER of the CVaRα solution

Optimal ER
(4.88)

where CVaRα solution represents the optimal first-stage allocation solution from solving the CVaR-

based model.

Figure 4.8 and Figure 4.9 show VCSα and VRSα with various α for the pre-event preparation

model respectively. From Figure 4.8 , it can be seen that when α = 0, VCSα = 0, which indicates

the CVaRα is equivalent to the ER. As α increases, the value of VCSα increases. It indicates

that when α = 0, the proposed CVaR-based model can completely represent the general stochastic

optimization model, which evaluate the expected risk from the uncertain damage consequence of

extreme event; when α is close to 1, it can consider the worse-consequence of an extreme event.

These results illustrate the proposed CVaR-based model can capture high damage loss consequences

stemming from the pre-event allocation decision as well as the nature of extreme weather events.

In Figure 4.9, we observes the value α increases, the value of VRSα also increases. It indicates

that the solution with higher α has better performance and more risk-averse when we focus on

low-probability but high-intense extreme weather events.



www.manaraa.com

75

Figure 4.8 The value of CVaRα solutions over ER solutions

Figure 4.9 The value of ER solutions over CVaRα solutions
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4.6 Summary

This chapter formulates a short-term proactive energy management and preparation problem

in the distribution system for an upcoming event as a two-stage stochastic mixed-integer linear

program model, considering the weather-induced uncertainties and a risk-averse measure for po-

tential damage consequence. We use CVaR as a general, coherent, and risk-averse approach to

measure the probabilistic damage consequence from an extreme weather event. A modified pro-

gressive hedging algorithm is proposed for solving the proposed model. To highlight the value of

our model, comparisons of the proposed model and the expected-risk model are conducted in the

modified IEEE 123-bus distribution feeder with different confidence level α. When α of CVaR is

small, it indicates that utility pays limited attention to sever damage loss consequence when they

prepare for an upcoming event. At the same time, when the confidence level α of CVaR becomes

large, the proposed model can capture high damage loss consequence stemming from the pre-event

allocation decision as well as the nature of extreme weather events.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

Recent severe power outages caused by extreme weather events, such as hurricanes, ice storm,

and flooding have highlighted the importance and urgency of enhancing the resilience of electric

power distribution systems. The goal of this dissertation is to pioneer advanced optimization-based

methodologies to provide actionable resilience-enhanced strategies for utility companies to upgrade

power distribution systems in the long-term and prepare for the upcoming event in the short-term.

An innovative modeling and solution methodology using a stochastic framework is proposed

in the chapter 3 to design a more resilient distribution systems against extreme weather event.

The proposed strategy consists of three ROD measures, namely, line hardening, installing DGs,

and adding automatic switches. First, the spatial-temporal correlations among ROD decisions,

uncertainty space, and system operation reactions during and after extreme weather events are

investigated. The structure of uncertainty space is constructed to decompose the correlations

among ROD decisions and the key random variables in the uncertainty space. Then, the evolution

of the system operational state during extreme weather events is estimated, and the operational cost

related to extreme weather events is evaluated. A two-stage stochastic mixed-integer framework

is proposed to model ROD problems, with the objective of minimizing the investment cost in the

first stage and the expected cost of the loss of load, repair, and DG operation in the second stage.

The framework can outline the effects of ROD decisions and uncertainty space on system response

during extreme weather events. As a result, a functional relationship between ROD measures and

ROD effects on system operation is successfully established. To solve this problem, a scenario-based

dual composition algorithm is introduced to achieve global optimality. The numerical studies on the

123-bus distribution system demonstrate the effectiveness of implementing optimal ROD measures.
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A proactive energy management and preparation strategy is presented in the Chapter 4 to reduce

the grid damage consequence and decrease the restoration time in an upcoming extreme weather

event. The proposed strategy manages solar energy in coordination with various flexible resources to

prepare for a forthcoming extreme weather events with the objective to improve distribution system

resilience during and after the event. A two-stage stochastic mixed-integer linear program model is

formulated, considering the weather-induced uncertainties and a risk-averse measure for potential

damage consequence. The first stage determines the pre-event resource allocation, including pre-

dispatching mobile emergency generator (MEG) and mobile energy storage (MES), pre-delivering

fuel, and pre-staging repair crews to different depots. The second stage operates various flexible

resources with the objective to minimize the CVaR associated with damage loss. CVaR is an

averse risk measure that focus on low-probability but high damage consequence from extreme

weather events. A modified progressive hedging algorithm is proposed for solving the proposed

CVaR minimization preparation problem. To highlight the value of our model, comparisons of

the proposed model and the expected-risk model are conducted in the modified IEEE 123-bus

distribution feeder with different confidence level α. When α of CVaR is small, it indicates that

utility pays limited attention to sever damage loss consequence when they prepare for an upcoming

event. At the same time, when the confidence level α of CVaR becomes large, the proposed model

can capture high damage loss consequence stemming from the pre-event allocation decision as well

as the nature of extreme weather events. The utility can decide their optimal pre-event proactive

energy management and preparation strategy based on their risk preference.

In summary, the proposed methodologies can result in increased absorptive capacity and reduced

recovery time and save credible physical and economic losses in facing extreme weather events.
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5.2 Research Contribution

The main contributions of this dissertation are listed as follows:

5.2.1 Resilience-Oriented Design of Distribution Systems

• A hybrid independent stochastic process and deterministic causal structure is proposed to

capture the spatiotemporal correlation among the various uncertainties of a ROD problem.

This approach avoids establishing the high-dimension joint distribution of uncertain variables.

A simulation technique based on structural engineering is presented to model the evolving

impacts of hurricanes on physical infrastructures to support a more accurate uncertainty

modeling.

• A two-stage SMILP is proposed to optimally implement multiple resilience-enhancing methods

considering various uncertainties, thus increasing the infrastructure strength and enabling

self-healing operations. Besides, this model captures the entire failure-recovery process so

that both investment and restoration costs can be modeled. The self-healing operation in the

second stage can mimic the outage propagation in a network until sectionalizers disconnect

lines. The model sectionalizes a distribution system into multiple self-supported MGs and

redispatches DGs to minimize the cost of the loss of load and DG operation in the second

stage while keeping radial topologies.

• A customized DD algorithm is developed to balance optimality and solution efficiency.

5.2.2 Risk-Averse Proactive Preparedness of Distribution Systems with Conditional

Value-at-Risk

• Multiple flexible resources in coordination with the integrated solar PV systems, including mo-

bile emergency generator (MEG), mobile energy storage (MES), back-up diesel DGs, network

reconfiguration, and repair crews, are considered to ensure several-day islanded operation

during and after the event.
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• A stochastic process is proposed to simulate line damage status before the event ends and its

corresponding repair time through modeling the complex interactions among weather forecast

information, grid components’ structure limitation, and the repair time of the single damaged

infrastructure.

• Risk is properly considered using CVaR methodology. The CVaR-constrained pre-event re-

source allocation problem is formulated as a SMILP to achieve the trade-off between ex-

pected allocation cost and damage loss risk. The model allows utilities to have different risk

preferences to decide their optimal pre-event proactive energy management and preparation

strategy.

• The modified progressive hedging algorithm is introduced to solve the proposed CVaR-

constrained pre-event resource allocation problem efficiently.

5.3 Future Work

5.3.1 Resilience Assessment of Distribution Systems

In order to prevent and fast recover from extreme events, power distribution systems have been

gradually equipped with state-of-art smart grid technologies to have self-healing capability. Self-

healing is defined as the capability of the system to rapidly detect faults, take actions to minimize

any adverse impacts, and promptly return to a stable operating state [75]. However, it is still

unknown if a self-healing distribution system is resilient to extreme weather events. Because re-

silience is still an emerging concept that has not been adequately explored by the power engineering

community [9]. TIn previous work [76], we quantify the resilience metric by the magnitude of the

expected degradation in performance level over time. In the future, we can develop different re-

silience metrics to evaluate the resilience of the distribution system based on the real utility outage

data.
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5.3.2 Resilience-oriented Design of Distribution Systems Using Risk Measures

In chapter 3, we propose a resilience-oriented design methodology using stochastic program-

ming. The general stochastic programming approach provides risk-neutral investment decisions for

utilities. In future work, we can use the CVaR minimization model to design resilient distribu-

tion systems against extreme weather events, while the trade-off between the investment cost and

resilience enhancement level can be balanced.

5.3.3 Proactive Preparedness

Proactive preparedness to cope with extreme weather events is significantly useful and helpful

in reducing the restoration time and cost after events and in enhancing the resilience of distribution

systems [13]. Chapter 4 presents a resource preparation strategy ahead of an upcoming extreme

weather event considering the uncertainty of the damaged line status, solar irradiance, load demand,

and crew repair time. In the future, we can make full use of advanced techniques or equipment,

such as microsensor or drone, to real-time monitor the vulnerable parts of distribution systems and

take some effective proactive measures to prevent damages.
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3. Shanshan Ma, Liu Su, Zhaoyu Wang, Feng Qiu, “Resilience Enhancement of Distribution
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